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Abstract. In this paper we survey the basics of reinforcement learning, gener-
alization and abstraction. We start with an introduction to the fundamentals of
reinforcement learning and motivate the necessity for generalization and abstrac-
tion. Next we summarize the most important techniques available to achieveboth
generalization and abstraction in reinforcement learning. We discuss basic func-
tion approximation techniques and delve into hierarchical, relational and transfer
learning. All concepts and techniques are illustrated with examples.

1 Introduction

In this chapter we provide an introduction to the concepts ofgeneralization and abstrac-
tion in reinforcement learning (RL). Abstraction is a technique to reduce the complexity
of a problem by �ltering out irrelevant properties while preserving all the important ones
necessary to still be able solve a given problem. Generalization is a technique to apply
knowledge previously acquired to unseen circumstances or extend that knowledge be-
yond the scope of the original problem. Humans show great capability in abstracting
and generalizing knowledge in everyday life. RL needs abstraction and generalization
as well to deal successfully with contemporary technological challenges, given the huge
state and action spaces that characterize real world problems. Recently, abstraction and
generalization have received signi�cant attention in the machine learning research com-
munity, resulting in a variety of techniques.

We start by introducing the preliminaries of RL itself in Section 2. We will discuss
Markov decision processes, policy and value iteration and model-free solution tech-
niques. In Section 3 we de�ne both abstraction and generalization, capturing common
features of both found in different de�nitions in literature, and then describe different
operators in a concrete domain, the video-game Wargus. Section 5 gives a concise in-
troduction to function approximation, one of the most commonly used types of methods
in RL for generalization and abstraction. Sections 6-8 go into greater detail discussing
three classes of techniques used for abstraction and generalization in RL: hierarchi-
cal, relational, and transfer learning. In addition to outlining the ideas behind each of
these classes of techniques, we present results to assist the reader in understanding how
these ideas may be applied in practice, and provide multiplereferences for additional
exposition. Finally, Section 9 concludes.



The goals of this survey are to provide an introduction to, and framework for, dis-
cussing abstraction and generalization in RL domains. The article does not provide dis-
cussions at an advanced level but merely tries to combine thebasics into one coherent
structure, such that newcomers to the �eld easily understand the elementary concepts
of abstraction and generalization in RL and have pointers available to more elaborate
and detailed expositions in the literature.

2 Reinforcement Learning

This section introduces basic reinforcement learning concepts and notation.

2.1 Markov decision processes

Most RL research is framed as using a Markov decision processes (MDP) [29]. MDPs
are sequential decision making problems for fully observable worlds. They are de-
�ned by a tuple(s0; t; S; A; T; R). Starting in an initial states0 (or set of states) at
each discrete time-stept = 0 ; 1; 2; : : : an adaptive agent observes an environment
statest contained in a set of statesS = f s1; s2; : : : ; sn g, and executes an action
a from a �nite set of admissible actionsA = f a1; a2; : : : ; am g. The agent receives
an immediate rewardR : S ! R, that assigns a value or reward for being in that
state, and moves to a new states0, depending on a probabilistic transition function
T : S � A � S ! [0; 1]. The probability of reaching states0 after executing ac-
tion a in states is denoted asT(s; a; s0). For all actionsa, and all statess and s0,
0 � T(s; a; s0) � 1 and

P
s02 S T(s; a; s0) = 1 . An MDP respects theMarkov prop-

erty: the future dynamics, transitions and rewards fully dependon the current state:
T(st +1 jst ; at ; st � 1; at � 1; : : : ) = T(st +1 jst ; at ) andR(st +1 jst ; st � 1; : : : ) = R(st +1 ).
The transition functionT and reward functionR together are often referred to as the
modelof the environment. The learning task in an MDP is to �nd a policy � : S ! A
for selecting actions with maximal expected (discounted) reward. The quality of a pol-
icy is indicated by avalue functionV � . The valueV � (s) speci�es the total amount of
reward which an agent may expect to accumulate over the future, starting from states
and then following the policy� . Informally, the value function indicates the long-term
desirability of states or state-action pairs after taking into account the states that may
follow, and the rewards available in those states. In a discounted in�nite horizon MDP,
the expected cumulative reward (i.e., the value function) is denoted as:

V � (s) = E

"
1X

t =0
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#

(1)

A discount factor 2 [0; 1i may be introduced to ensure that the rewards returned
are bounded (�nite) values. The variable determines the relevance of future rewards
in the update. Setting to 0 results in amyopicupdate (i.e., only the immediate reward
is optimized), whereas values closer to1 will increase the contribution of future rewards
in the update.

The value for a given policy� , expressed by Equation 1, can iteratively be com-
puted by theBellman Equation[3]. One typically starts with an arbitrarily chosen value



function, and at each iteration for each states 2 S, the value function is updated based
on the immediate reward and the current estimate ofV � :

V �
t +1 (s) = R(s) + 

X

s02 S

T(s; � (s); s0)V �
n (s0) (2)

The process of updating state value functions based on current estimates of succes-
sor state values is referred to asbootstrapping. The depth of successor states considered
in the update can be varied, i.e., one can perform a shallow bootstrap where one only
looks at immediate successor states or a deep bootstrap where successors of successors
are also considered. The value functions of successor states are used to update the value
function of the current state. This is called abackupoperation. Different algorithms use
different backup strategies, e.g., sample backups (samplea single successor state) or
full backups (sample all successor states).

The solution to an MDP is theoptimal policy, i.e., the policy that receives the max-
imum reward. The optimal policy� � (s) is de�ned such thatV � �

(s) � V � (s) for all
s 2 S and all policies� . The optimal value function, often abbreviated asV � following
Bellman optimality criterion:

V � (s) = R(s) +  max
� 2 A

"
X

s02 S

T(s; a; s0)V � (s0)

#

(3)

Solving Equation 3 can be done in an iterative manner, similar to the computation
of the value function for a given policy such as expressed in Equation 2. The Bellman
optimality criterion is turned into an update rule:

V �
t +1 (s) = R(s) +  max

� 2 A

"
X

s02 S

T(s; a; s0)V �
n (s0)

#

(4)

The optimal action can then be selected as follows:

� � (s) = arg max
a

2

4R(s) + 
X

s02 S

T(s; a; s0)V � (s0)

3

5 (5)

Besides learning state-values, one can also de�ne state-action value functions, also
calledaction-value functions, orQ-functions. Q-functions map state-action pairs to val-
ues,Q : S � A ! R. They re�ect the long term desirability of performing action a
in states, and then performing policy� thereafter. Learning Q-functions is particularly
useful whenT is unknown. The Q-function is de�ned as follows:

Q� (s; a) = R(s; a) + 
X

s02 S

T(s; a; s0)V � (s0) (6)

The optimal policy� � selects the action which maximizes the optimal action value
functionQ� (s; a) for each states 2 S:

� � (s) = arg max
a

Q� (s; a) (7)



Algorithm 1 : Policy Iteration

REQUIRE initialize V (s) and� (s) arbitrarily;1

POLICY EVALUATION;2

repeat3

� = 0 ;4

foreachs 2 S do5

v = V (s);6

V (s) = R(s; � (s)) + 
P

s02 S T(s; � (s); s0)V (s0);7

� = max( �; jv � V (s)j);8

end9

until � < � ;10

POLICY IMPROVEMENT;11

policy-stable = true;12

foreachs 2 S do13

b = � (s);14

� (s) = arg max a
�
R(s; a) + 

P
s02 S T(s; a; s0)V (s0)

�
;15

if b 6= � (s) then policy-stable = false16

end17

if policy-stablethen stopelsego to POLICY EVALUATION18

2.2 Solution techniques

When an environment's model (i.e., transition functionT and reward functionR) is
known, the optimal policy can be computed using a dynamic programming approach,
such as inpolicy iterationandvalue iteration. Policy iteration [18] consists of two steps,
a policyevaluationand policyimprovementstep. It starts with an arbitrary policy and
value functions. It then updates the value functions under the given policy (the evalu-
ation step), and uses the new value functions to improve its policy (the improvement
step). Each policy is guaranteed to be a strict improvement over the previous one. The
algorithm requires an in�nite number of iterations to converge, but in practice the algo-
rithm can be stopped when value functions only change by a small amount. A complete
description is given in Algorithm 1.

The drawback of policy iteration is that it requires a complete evaluation of the
current policy before improvements are made. Another possibility is to make improve-
ments after a single sweep (a single backup of a state). This particular case is called
value iteration[3]. Value iteration (or greedy iteration) starts with an arbitrary action-
value function and for each state it iterates over all actions (unlike policy iteration which
only evaluates the action as indicated by the policy) and updates the action-value func-
tion. The value iteration backup is identical to the policy evaluation backup except that
it requires the maximum to be taken over all actions. Similarto policy iteration, the al-
gorithm can be stopped when the change in policy is within a certain bound. Algorithm
2 gives a complete description of value iteration.

There exist several model-based learning methods, such as Dyna-Q [38, 51] and R-
Max [6], but we will not go into much detail here because we aremost interested in
domains where the model is assumed to be both unknown and too complex to easily



Algorithm 2 : Value Iteration

REQUIRE initialize V (s) arbitrarily;1

repeat2

� = 0 ;3

foreachs 2 S do4

v = V (s);5

foreacha 2 A(s) do6

Q(s; a) = R(s; a) + 
P

s02 S T(s; a; s0)V (s0)7

end8

V (s) = max a Q(s; a);9

� = max( �; jv � V (s)j);10

end11

until � < � ;12

learn. When the model of the environment is unknown, as it usually is, we can use
RL as a viable alternative. RL does not depend on a model but rather collects samples
from the environment to estimate the environment's model. Therefore, the crucial dis-
tinction between model-free and model-based methods is that the �rst samples future
states whereas the second does a full sweep of successor states. Through exploration
the reinforcement learner gathers data (i.e., rewards and future states) and uses this
to learn a policy. An important issue that occurs is the exploration and exploitation
dilemma, i.e., when to cease exploration and to start exploiting acquired knowledge.
Various exploration and exploitation strategies exist, such as� -greedy and Boltzmann
exploration. For a thorough overview, we refer interested readers elsewhere [52, 39].
Temporal difference learning methods such as Q-learning [50] and SARSA [33] are
model-free solution methods. The algorithms are describedin detail in [39]. The update
rule for one of the most popular algorithms,one-stepQ-learning is:

Q(a; s) ! (1 � � )Q(a; s) + �
�
R(s; a) +  max

a0
Q(a0; s0)

�
(8)

where� is the step-size parameter, and the discount-rate. This algorithm is proven to
converge to an optimal policy in the limit (under reasonableconditions). Unfortunately,
for many complex, real-world problems, solving the MDP is impractical and complexity
must be reduced in order to keep learning tractable.

In the following sections we will discuss several ways to reduce the search space, so
that learning with RL is still possible in more challenging domains (i.e., domains with
large or in�nite state spaces).

3 Abstraction and Generalization

In order to make RL feasible in complex domains, abstractionor generalization opera-
tors are often applied to make the problem tractable. We describe these operators in the
current section and then give concrete examples in the following section.



Abstraction and generalization are important concepts in arti�cial intelligence (AI).
Some claim that the ability to abstract and generalize is theessence of human intelli-
gence [7] and that �nding good representations is the primary challenge in designing
intelligent systems. However, systems that learn and discover useful representations
automatically are scarce. Instead, this problem is often tackled by the human designer.

A consistent de�nition of abstraction in the AI literature is not available: typically
the de�nitions are tailored to speci�c sub�elds of AI, e.g, planning and problem solving
[17], theorem proving [16], knowledge representation (e.g., spatial and temporal rea-
soning), machine learning, and computer vision [53]. The general principle underlying
all these de�nitions is that an abstraction operation maps arepresentation of a problem
onto a new representation so as to simplify reasoning while preserving useful proper-
ties. One only considers what is relevant and ignores many less important details for
solving a particular task. Readers interested in a survey ofstate abstraction techniques
in MDPs, as well an initial attempt to unify them, are referred elsewhere [24].

In problem solving and theorem proving, abstraction may be associated with a trans-
formation of the problem representation that allows a theorem to be proved (or a prob-
lem to be solved) more easily with reduced computational complexity. This form of
abstraction �rst abstracts a goal, proves or solves the abstracted goal, and then uses the
structure of this abstracted proof to help construct the proof of the original goal. This
method relies on the assumption that the structure of the abstracted proof is similar to
the structure of the original goal. Another form of abstraction, as used in knowledge
representation, machine learning, and computer vision, focuses more on the conceptu-
alization of a domain, i.e., �nding appropriate concepts orfeatures of a domain. In this
paper we will adopt the following de�nition for abstraction:

De�nition 1 (Abstraction). An abstraction operation changes the representation of an
object by hiding or removing less critical details while preserving desirable properties.
By de�nition, this implies loss of information.

This de�nition is rather general and covers several different abstraction operations.
In this paper we will adopt Zucker's taxonomy [53] to furthercategorize the different
abstraction types. These abstraction operations are de�ned and explained with the help
of a concrete example in the next section.

For generalization we employ the following de�nition:

De�nition 2 (Generalization). A generalization operation de�nes similarities between
objects. This operation does not affect the object's representation. By de�nition, this
implies no loss of information.

For example, we may hypothesize that all rectangles are similar in some way. A
strict de�nition of generalization states that all rectangles are a subset of its generalized
hypothesis (e.g., all rectangles have 4 sides), but typically in machine learning, hypoth-
esis are approximated and allow errors. For example, when stating that all rectangles
have equal length sides, it is possible that some rectanglesare outside of the hypothesis
space (namely, all non square rectangles). Therefore, a weaker de�nition of generaliza-
tion states that we have good evidence that all rectangles behave in a similar way. The
generalization power measures the quality of the hypothesis on future examples.



We will next describe abstraction and generalization opportunities for RL in a con-
crete example, namely for learning a policy for a virtual agent in the computer game of
Wargus.

4 An Illustrative Example

Fig. 1.A complex learning task
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Fig. 2. A naive state representation, where
rows represent the observations of states (in
this case, a pixel) and the columns represent
the features used to describe the world

One example application that can bene�t from reinforcementlearning is computer
games. Figure 1 is a screen shot of the computer game Wargus. In this �gure we see an
agent that is surrounded by bushes and buildings. This agent's responsibility (a peasant
in the game) is a typical resource gathering task: it must travel to the goldmine (situated
in the top right corner) and gather gold. We will tackle this learning task within the RL
framework. The action space will contain the actions for moving in all directions. We
assume that the transition function is unknown due to the complex and dynamic nature
of the game environment. We de�ne the agent's reward signal to be as follows: a small
negative reward for each step and a positive (or zero) rewardwhen completing the task.
The dif�cult part is �nding an appropriate state representation for this task. The state
complexity in our world can be expressed bymn , wheren represents the number of
grid cells andm the number of objects in the world. The state complexity is thus expo-
nential in the dimension of the world and polynomial in the number of objects. A naive
state representation (see Figure 2) for our example application would be to consider the
smallest particle of this world (in this case a pixel in this 2-dimensional computer game
world with dimension500� 500) to be a single grid cell, and then assuming that each



grid cell can be part of any of �ve different objects (which isalready a simpli�cation).
For example, in Figure 2 the �rst row indicates that the �rst pixel is part of a forest
object. When using this representation, learning a policy that directs the agent to the
goldmine would be infeasible, due to the large state space, requiring the value function
to contain250005 distinct values. For any complex computer game, when modeling the
world described as above, none of the standard RL approacheswill converge to a decent
policy in a reasonable amount of time. Rather than devising new update rules for RL,
a more promising approach is to �nd more compact task representations (i.e., make the
problem space simpler) and generalize over similar states.In other words, we need to
apply appropriate abstractions and generalizations. We will next describe �ve different
abstraction operations as de�ned by Zucker [53] that can scale down the problem com-
plexity. We will apply these �ve techniques consecutively to our challenging problem
to reduce complexity.

4.1 Domain Reduction

Domain Reduction is an abstraction operation that reduces part of the domain (i.e.,
content or instances) by grouping content together. Content refers to the observations
of states (i.e., the row vectors in our world matrix). Beforewe evaluated each single
pixel, so that our world matrix contained 25000 state observations (one for each grid
cell in our world). The matrix in Figure 2 is a reformulation of the image in Figure 1:
it applies a different notation for the same object without losing any information. We
can reduce the content, i.e., reduce the number of state observations by making sets of
grid cells indistinguishable. In our example we can choose to group neighboring pixels
together to form a larger prototype grid cell. As a result, the world is divided in larger
grid cells, as illustrated in Figure 3. An observation in ourworld matrix now covers
several pixels, and therefore attribute values are real-valued percentages (averages over
the covered pixels) rather than booleans (see Figure 4). Thenumber of pixels grouped
together to form a grid cell can be increased, but a coarser view of the world necessitates
information loss. The tradeoff between information loss and the quality of the learned
policy can be tuned, depending on task requirements.

4.2 Domain Hiding

Domain hiding is an abstraction operation that hides part ofthe domain, focusing on
relevant content or objects in the domain. This is one of the most common form of
abstraction. As mentioned before, content refers to the state observations (row vectors
in our matrix). Rather than reducing the number of state observations (by grouping
them), domain hiding simply ignores less relevant state observations. For example, in
our task we want the agent to learn a policy that directs it to the gold mine. Therefore,
we are not necessarily interested in some parts of the world,and we hide these state
observations. We take the world that was the result of domainreduction as our input
and apply domain hiding. The result is shown in Figure 5. In our matrix representation,
a domain hiding operation can be performed by deleting observations, whereas domain
reduction averages observations together.



Fig. 3.Domain reduction
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Fig. 4. State representation of world after
domain reduction

Fig. 5.Domain hiding
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Fig. 6. State representation of world after
domain hiding

4.3 Co-Domain Hiding

Co-domain hiding is an abstraction operation that hides part of the co-domain (i.e.,
description) of an object by selectively paying attention to subsets of useful features in a
given task. With the co-domain, we refer to the features of our world. In the state matrix,
this is represented by the column vectors. Co-domain hidingignores columns that are
not relevant for the task. For example, in Figure 7, the sand feature is removed from the
description since it is believed this feature does not contribute to an improvement for
the agent's policy. Notice that thesand in Figure 7 and the sand column in Figure 8's
matrix have been removed.



Fig. 7.Co-domain hiding
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Fig. 8. State representation of world after
co-domain hiding

4.4 Co-Domain Reduction

Co-domain reduction is an abstraction operation that reduces part of the co-domain (i.e.,
description) by making sets of attribute values indistinguishable. This implies reducing
the range of values an attribute may take. In Figure 8 we see attribute values ranging
from 0 to 1. We can apply abstractions by reducing the range ofattribute values.

This can be achieved by applying some threshold function (injective mapping). For
example, if a certain cell is covered with an object by more than 50 percent, in our new
world representation this cell is now covered completely with this object, whereas ob-
jects that cover less than 50 percent are abstracted away from the matrix representation
(see Figure 10). Effectively, we transform real numbers (i.e., percentages of objects in
a grid cell) to boolean values, just as we saw in Figure 2, but now the boolean values do
not correspond to pixels, but to composite grid cells.

4.5 Domain Aggregation

Domain Aggregation is an abstraction operation that aggregates (combines) parts of the
domain (i.e., content). Content (or objects) are grouped together and form a new object
with its own unique properties and parameters. In our example, we can choose to group
objects together that obstruct the agent such as forests, structures or rocks. We group
these objects together to form a complete new object, namelyan obstacle (see Figure
11).

4.6 Generalization

A generalization operation is different from an abstraction operation in that it does not
change an object's representation and, therefore, does notlose any information. Instead
it claims generalities between objects, leaving the original objects untouched. In our
example we can make a generalized hypothesis that forests and rocks are equivalent



Fig. 9.Co-domain reduction
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Fig. 10. State representation of world after
co-domain reduction

Fig. 11.Domain Aggregation

�»
�»
�»
�»
�»
�»
�»
�»

�¼

�º

�«
�«
�«
�«
�«
�«
�«
�«

�¬

�ª

� 

10

00

......

01

10

obstacleagent

w

Fig. 12. State representation of world after
domain aggregation

in that they obstruct the agent from moving there. This is illustrated in Figure 13: our
generalized hypothesis claims that the light-grey parts ofthe world are equivalent (i.e.,
trees and rocks combined), and similarly for the dark-grey parts of the world (i.e., grass
and sand combined). The effect is (roughly) similar to the effect of an aggregation
operation in Figure 11. However, it is possible that at some point our generalization
that forests and rock are equivalent proves to be faulty. Say, the agent has learned to
chop trees down so it can move through forest locations. In the case of generalization,
we can simply remove or reformulate our hypothesis and return to the original world,
whereas with abstraction the original information is lost and we can not turn back to the
original world. In our example (see Figure 14), it is unclearwhether an obstacle used
to be part of a forest or rock. We threw away that information during our abstraction
process. Therefore, we claim that generalization is more �exible and less conclusive
than abstraction.



Fig. 13.Generalization Fig. 14.Difference between abstraction and
generalization: with an abstraction opera-
tion, information is lost.

5 Function Approximation

The previous section introduced many different generalization and abstraction opera-
tors. In this section, we discuss a commonly used approach, where information gathered
by an agent is used to tune a mathematical function that represents the agent's gathered
knowledge.

In tasks with small and discrete state spaces, the functionsV , Q, and� can be repre-
sented in a table, such as discussed in the previous section.However, as the state space
grows using a table becomes impractical (or impossible if the state space is continu-
ous). In such situations, some sort offunction approximatoris necessary, which allow
the agent to use data to estimate previously unobserved (s; a) pairs.

How to best choose which function approximator to use, or howto set its parame-
ters, is currently an open question. Although some work in RL[11, 24, 25] has taken a
more systematic approaches tostate abstractions(also calledstructural abstractions),
the majority of current research relies on humans to help bias a learning agent by care-
fully selecting a function approximator with parameters appropriate for a given task. In
the remainder of this section we discuss three popular function approximators: Cere-
bellar Model Arithmetic Computers (CMACs), neural networks, and instance-based
approximation.

The �rst two methods, CMACs and neural networks, may be considered both ap-
proximation and generalization operators. Rather than saving the data gathered in the
world, the agent tunes its function approximator and discards data, losing some infor-
mation (abstraction), but it is then able to calculate the value of the function for val-
ues that have not been experienced (generalization). Many methods for instance-based
approximation also discard data, but some do not; while all instance-based function
approximators are generalizers, not all are abstractors.



Cerebellar Model Arithmetic Computers CMACs [1] take arbitrary groups of con-
tinuous state variables and lay in�nite, axis-parallel tilings over them (see Figure 15(a)).
This allows discretization of continuous state space into tiles while maintaining the ca-
pability to generalize via multiple overlapping tilings. Increasing the tile widths allows
better generalization; increasing the number of tilings allows more accurate representa-
tions of smaller details. The number of tiles and the width ofthe tilings are generally
handcoded: this sets the center,ci , of each tile and dictates which state values will ac-
tivate which tiles. The function approximation is trained by changing how much each
tile contributes to the output of the function approximator. Thus, the output from the
CMAC is the computed sum:

f (x) =
X

i

wi f i (x) (9)

but only tiles which are activated by the current state features contribute to the sum:

f i (x) =
�

1; if tile i is activated
0; otherwise

Weights in a CMAC are typically initialized to zero and are changed over time via
learning.

Arti�cial Neural Networks The neural network function approximator similarly al-
lows a learner to approximate the action-value function, given a set of continuous, real
valued, state variables. Although neural networks have been shown to be dif�cult to
train in certain situations on relatively simple RL problems [5, 30], they have had no-
table successes on some RL tasks [9, 46]. Each input to the neural network is set to the
value of a state variable and each output corresponds to an action. Activations of the
output nodes correspond to Q-values (see Figure 15(b) for a diagram).

When used to approximate an action-value function, neural networks often use non-
recurrent feedforward networks. Each node in the input layer is given the value of a dif-
ferent state variable and each output node corresponds is the the calculated Q-value for
a different action. The number of inputs and outputs are thusdetermined by the task's
speci�cation, but the number of hidden nodes is speci�ed by the agent's designer. Note
that by accepting multiple inputs the neural network can determine its output by con-
sidering multiple state variables in conjunction (as opposed to a CMAC consisting of a
separate 1-dimensional tiling for each state variable). Nodes often have either sigmoid
or linear transfer functions. Weights for connections in the network are typically initial-
ized to random values near zero. The networks are often trained using backpropagation,
where the error signal to modify weights is generated by the learning algorithm, as with
the other function approximators.

Instance-based approximationCMACs and neural networks aim to represent a com-
plex function with a relatively small set of parameters thatcan be changed over time. In
contrast, instance-based approximation storesinstancesexperienced by the agent (i.e.,
hs; a; r; s0i ) to predict the underlying structure of the environment. Speci�cally, this ap-
proximation method can be used by model-learning methods (c.f., [19, 20]), which learn
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to approximateT andR by observing the agent's experience when interacting with an
environment.

Consider the case where an agent is acting in a discrete environment with a small
state space. The agent could record every instance that it experienced in a table. If the
transition function were deterministic, as soon as the agent observed every possible
(s; a) pair, it could calculate the optimal policy. If the transition function were instead
stochastic, the agent would need to take multiple samples for every (s; a) pair. Given a
suf�cient number of samples, as determined by the variance in the resultingr ands0,
the agent could again directly calculate the optimal policyvia dynamic programming.

When used to approximateT andR for tasks with continuous state spaces, using in-
stances for function approximation becomes signi�cantly more dif�cult. In a stochastic
task the agent is unlikely to ever visit the same state twice,with the possible exception
of a start state, and thus approximation is critical. Furthermore, since one can never
gather “enough” samples for every (s, a) pair, such methods generally need to deter-
mine which instances are necessary to store so that the memory requirements are not
unbounded. Creating ef�cient instance-based function approximators, and their associ-
ated learning algorithms, are topics of ongoing research inRL.

Now that the basic concepts of abstraction, and generalization have been introduced
in the context of RL, the next section describes our own contribution in the �eld of
abstraction and generalization in RL through action abstraction via hierarchical RL
techniques. Later sections will then discuss work on generalization using relational re-
inforcement learning and transfer learning.



6 Hierarchical Reinforcement Learning

There exist many extensions to standard RL that make use of the abstraction and gener-
alization operators mentioned in Section 4. One such methodis hierarchical reinforce-
ment learning (HRL), which essentially aggregates actions. HRL is an intuitive and
promising approach to scale up RL to more complex problems. In HRL, a complex task
is decomposed into a set of simpler subtasks that can be solved independently. Each
subtask in the hierarchy is modeled as a single MDP and allowsappropriate state, ac-
tion and reward abstractions to augment learning compared to a �at representation of
the problem. Additionally, learning in a hierarchical setting can facilitate generaliza-
tion: knowledge learned in a subtask can be transferred to other subtasks. HRL relies
on the theory of Semi-Markov decision processes (SMDPs) [40]. SMDPs differ from
MDPs in that actions in SMDPs can last multiple time steps. Therefore, in SMDPs ac-
tions can either be primitive actions (taking exactly 1 time-step) or temporally extended
actions. While the idea of applying HRL in complex domains such as computer games
is appealing, with the exception of [2], there are few studies that examining this issue.

We adopted a HRL method similar to Hierarchical Semi-MarkovQ-learning (HSMQ)
described in [12]. HSMQ learns policies simultaneously forall non-primitive subtasks
in the hierarchy, i.e.,Q(p; s; a) values are learned to denote the expected total reward
of performing taskp starting in states, executing actiona, and then following the op-
timal policy thereafter. Subtasks in HSMQ include termination predicates. These parti-
tion the state spaceS into a set of active states and terminal states. Subtasks canonly
be invoked in states in which they are active, and subtasks terminate when the state
transitions from an active to a terminal state. We added to the HSMQ algorithm de-
scribed in [12] a pseudo-reward function [12] for each subtask. The pseudo-rewards tell
how desirable each of the terminal states are for this subtask. Algorithm 3 outlines our
HSMQ-inspired algorithm. Q-values for primitive subtasksare updated with the one-
step Q-learning update rule, while the Q-values for non-primitive subtasks are updated
based on the rewardR(s; a), collected during execution of the subtask and a pseudo
rewardR̂.

6.1 Reactive Navigation Task

We applied our HSMQ algorithm to the game of Wargus. Inspiredby the resource gath-
ering task, we created a world wherein a peasant has to learn to navigate to some loca-
tion on the map while avoiding enemy contact (in the game of Wargus, peasants have
no means for defending themselves against enemy soldiers).More precisely, our sim-
pli�ed game consists of a fully observable world that is32� 32grid cells and includes
two units: a peasant (the adaptive agent) and an enemy soldier. The adaptive agent has
to move to a certain goal location. Once the agent reaches itsgoal, a new goal is set at
random. The enemy soldier randomly patrols the map and will shoot at the peasant if it
is in �ring range. The scenario continues for a �xed time period or until the peasant is
destroyed by the enemy soldier.

Relevant properties for our task are the locations of the peasant, soldier, and goal.
All three objects can be positioned in any of the 1024 locations. A propositional for-
mat of the state space describes each state as a feature vector with attributes for each



Algorithm 3 : Modi�ed version of the HSMQ algorithm: The update rule for non-
primitive subtasks (line 13) differs from the original implementation

Function HSMQ(state s,subtask p) returns �oat;1

Let Totalreward= 0 ;2

while (p is not terminated)do3

Choose actiona = � (s);4

if a is primitivethen5

Executea, observe one-step rewardR(s; a) and result states0;6

else ifa is non-primitive subtaskthen7

R(s; a) := HSMQ(s; a) , which invokes subtaska and returns the total reward8

received whilea executed
Totalreward= Totalreward+ R(s; a);9

if a is primitivethen10

Q(p; a; s) ! (1 � � )Q(p; a; s) + �
�
R(s; a) +  max

a0
Q(p; a0; s0)

�
;

11

else ifa is non-primitive subtaskthen12

Q(p; a; s) ! (1 � � )Q(p; a; s) + �
h
R(s; a) + R̂

i
;13

end14

return Totalreward;15

possible property of the environment, which amounts to230 different states. As such,
a tabular representation of the value functions is too largeto be feasible. Additionally,
such encoding prevents any opportunity for generalizationfor the learning algorithm,
e.g., when a policy is learned to move to a speci�c grid cell, the policy can not be reused
to move to another. A deictic state representation identi�es objects relative to the agent.
This reduces state space complexity and facilitates generalization. This is a �rst step
towards a fully relational representation, such as the one covered in Section 7. We will
discuss the state features used for this task in Section 6.2.

The proposed task is complex for several reasons. First, thestate space without any
abstractions is enormous. Second, the game state is also modi�ed by an enemy unit.
(The enemy executes a random move on each timestep unless thepeasant is in sight,
in which case it moves toward the peasant.) Furthermore, each new task instance is
generated randomly (i.e., random goal and enemy patrol behavior), so that the peasant
has to learn a policy that generalizes over unseen task instances.

6.2 Solving the Reactive Navigation Task

We compare two different ways to solve the reactive navigation task, namely using �at
RL and HRL. For a�at representation of our task, the deictic state representation can
be de�ned as the Cartesian-product of the following four features:Distance(enemy,s) ,
Distance(goal,s) , DirectionTo(enemy,s) , andDirectionTo (goal,s) .
The functionDistance returns a number between 1 and 8 or a string indicating that
the object is more than 8 steps away in states, whileDirectionTo returns the relative
direction to a given object in states. Using8 possible values for theDirectionTo
function, namely the eight compass directions, and9 possible values for theDistance
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Fig. 16.This �gure shows a screenshot of the reactive navigation task in the Wargus game. In this
example, the peasant is situated at the bottom. Its task is to move to a goal position (the dark spot
right to the center) and avoid the enemy soldier (situated in the upper left corner) that is randomly
patrolling the map.



function, the total state space is drastically reduced from230 to only 5184 states. The
size of the action space is8, containing actions for moving in each of the eight com-
pass directions. The scalar reward signalR(s; a) in the �at representation should re�ect
the relative success of achieving the two concurrent sub-goals (i.e., moving towards the
goal while avoiding the enemy). The environment returns a+10 reward whenever the
agent is located on a goal location. In contrast, a reward of� 10 is returned when the
agent is being �red at by the enemy unit, which occurs when theagent is in �ring range
of the enemy (i.e., within 5 steps). Each primitive action always yields a reward of� 1.
An immediate concern is that both sub-goals are often in competition. We can certainly
consider situations where different actions are optimal for the two sub-goals, although
the agent can only take one action at a time. An apparent solution to handle these two
concurrent sub-goals is applying a hierarchical representation, which we discuss next.

In thehierarchical representation, the original task is decomposed into two sim-
pler subtasks that solve a single sub-goal independently (see Figure 17). Theto goal
subtask is responsible for navigation to goal locations. Its state space includes the
Distance(goal,s) andDirectionTo(goal,s) features. Thefrom enemysub-
task is responsible for evading the enemy unit. Its state space includes theDistance(enemy,s)
andDirectionTo(enemy,s) features. The action spaces for both subtasks include
the primitive actions for moving in all compass directions.The two subtasks are hi-
erarchically combined in a higher-levelnavigatetask. The state space of this task is
represented by theInRange(goal,s) andInRange(enemy,s) features, and its
action space consists of the two subtasks that can be invokedas if they were primitive
actions.InRange is a function that returnstrue if the distance to an object is8 or less
in states, andfalseotherwise. Because these new features can be de�ned in termsof
existing features, we are not introducing any additional domain knowledge compared
to the �at representation. Theto goalandfrom enemysubtasks terminate at each state
change on the root level, e.g., when the enemy (or goal) transitions from in range to
out of range and vice versa. We choose to set the pseudo-rewards for both subtasks
to +100 whenever the agent completes a subtask and0 otherwise. Thenavigatetask
never terminates, but the primitive subtasks always terminate after execution. The state

Fig. 17.Hierarchical decomposition of the reactive navigation task



spaces for the two subtasks are of size72, and four fornavigate. Therefore, the state
space complexity in the hierarchical representation is approximately35 times less than
with the �at representation. Additionally, in the hierarchical setting we are able to split
the reward signal, one for each subtask, so they do not interfere. Theto goal subtask
rewards solely moving to the goal (i.e., only process the+10 reward when reaching
a goal location). Similarly, thefrom enemysubtask only rewards evading the enemy.
Based on these two reward signals and the pseudo-rewards, the rootnavigatetask is
responsible for choosing the most appropriate subtask. Forexample, suppose that the
peasant at a certain time decided to move to the goal and it took the agent7 steps to
reach it. The reward collected while theto goalsubtask was active is� 7 (reward of� 1
for all primitive actions) and+10 (for reaching the goal location) resulting in a+3 total
reward. Additionally, a pseudo-reward of+100 is received becauseto goal success-
fully terminated, resulting in a total reward of+103 that is propagated to thenavigate
subtask, that is used to update its Q-values. The Q-values for the to goal subtask are
updated based on the immediate reward and estimated value ofthe successor state (see
equation 8).

6.3 Experimental Results

We evaluated the performance of �at RL and HRL in the reactivenavigation task. The
step-size and discount-rate parameters were set to0:2 and0:7, respectively. These val-
ues were determined during initial experiments. We chose touse more exploration for
theto goalandfrom enemysubtasks compared tonavigate, since more Q-values must
be learned. Therefore, we used Boltzmann action selection with a relatively high (but
decaying) temperature for theto goal and from enemysubtasks and� -greedy action
selection at the top level, with� set to0:1 [39].

A “trial” (when Q-values are adapted) lasted for30 episodes. An episode termi-
nated when the adaptive agent was destroyed or until a �xed time limit was reached.
During training, random instances of the task were generated, i.e., random initial start-
ing locations for the units, random goals and random enemy patrol behavior. After each
trial, we empirically tested the current policy on a test setconsisting of �ve �xed task
instances that were used throughout the entire experiment.These included �xed starting
locations for all objects, �xed goals and �xed enemy patrol behavior. We measured the
performance of the policy by counting the number of goals achieved by the adaptive
agent (i.e., the number of times the agent successfully reached the goal location before
it was destroyed or time ran out) by evaluating the greedy policy. We ended the exper-
iment after1500training episodes (50 trials). The experiment was repeated�ve times
and the averaged results are shown in Figure 18.

From this �gure we can conclude that while both methods improve with experience,
learning with the HRL representation outperforms learningwith a �at representation.
By using (more human-provided) abstractions, HRL represented the policy more com-
pactly than the �at representation, resulting in faster learning. Furthermore, HRL is
more suited to handling concurrent and competing subtasks due to the split reward sig-
nal. We expect that even after considerable learning with �at RL, HRL will still achieve
a higher overall performance. This experiment shows that when goals have clearly con-



Fig. 18.This �gure shows the average performance of Q-learning over 5 experiments in the reac-
tive navigation task for both �at and HRL. The x-axis denotes the numberof training trials and
the y-axis denotes the average number of goals achieved by the agent for the tasks in the test set.

�icting rewards and the overall task can be logically divided into subtasks, HRL could
be successfully applied.

7 Relational Reinforcement Learning

Relational reinforcement learning [14] (RRL) combines theRL setting with relational
learning or inductive logic programming [26] (ILP) in orderto represent states, ac-
tions, and policies using the structures and relations thatidentify them. These structural
representations allow generalization over speci�c goals,states, and actions. Because
relational reinforcement learning algorithms try to solveproblems at an abstract level,
the solutions will often carry to different instantiationsof that abstract problem. For
example, resulting policies learned by an RRL system often generalize over domains
with varying number of existing objects.

A typical example is the blocks world. A number of blocks withdifferent properties
(size, color, etc.) are placed on each other or on the �oor. Itis assumed that an in�nite
number of blocks can be put on the �oor and that all blocks are neatly stacked onto
each other, e.g., a block can only be on one other block. The possible actions consist
of moving one clear block (e.g., a block with no other block ontop of it) onto another
clear block, or onto the �oor. It is impossible to represent such world states with a
propositional representation without an exponential increase of the number of states.
Consider as an example the right-most state in Figure 19. In First-Order Logic (FOL),
this state can be represented, presuming this state is called s, by the conjunction

f on(s; c; f loor ) ^ clear(s; c) ^ on(s; d; f loor ) ^ on(s; b; d) ^ on(s; a; b) ^
clear(s; a) ^ on(s; e; f loor ) ^ clear(s; e)g.

s is reached by executing the move action (indicated by the arrow), noted asmove(r,s,a,b),
in the previous state (on the left in Figure 19).
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Fig. 19.The blocks world

One of the most important bene�ts of the relational learningapproach is that one can
generalize over states, actions, objects, but one is not forced to do so (one can abstract
away selectively only these things that are less important). For instance, suppose that all
blocks have a size property. One could then say that “there exists a small block which is
on a large block” (9B 1; B 2 : block(B 1; small; ); block(B 2; large; ); on(B 1; B 2)).
ObjectsB 1 and B 2 are free variables, and can be instantiated by any block in the
environment. RRL can generalize over blocks and learn policies for a variable number
of objects without necessarily suffering from the “curse ofdimensionality” (where the
size of the value function increases exponentially with thedimension of the state space).

Although it is a relatively new representation, several approaches to RRL have been
proposed during the last few years. One of the �rst methods developed within RRL was
relational Q-learning [14], described in Algorithm 4. Relational Q-learning behaves
similarly to standard Q-learning, but is adapted to the RRL representation. In relational
reinforcement learning, the representation contains structural or relational information
about the environment. Relational Q-learning employs a relational regression algorithm
to generalize over the policy space. Learning examples, stored as a tuple (a; s; Q(s; a)),
are processed by an incremental relational regression algorithm to produce a relational
value-function or policy as a result. So far, a number of different relational regression
learners have been developed.1

In [28], we demonstrated how relational reinforcement learning and multi-agent
systems techniques could be combined to plan well in tasks that are complex, multi-
state, and dynamic. We used a relational representation of the state space in multi-agent
reinforcement learning, as this has many bene�ts over the propositional one. For in-
stance, it handled large state spaces, used a rich relational language, modeled other
agents without a computational explosion (generalizing over agents' policies), and gen-
eralized over newly derived knowledge. We investigated thepositive effects of relational
reinforcement learning applied to the problem of agent communication in multi-agent
systems. More precisely, we investigated the learning performance of RRL given some
communication constraints. Our results con�rm that RRL canbe used to adequately
deal with large state spaces by generalizing over states, actions and even agent policies.

1 A thorough discussion and comparison can be found in [13].



Algorithm 4 : The Relational Reinforcement Learning Algorithm

REQUIRE initialize Q(s; a) ands0 arbitrarily;1

e  0;2

repeat f for each episodeg3

Examples ; ;4

i  0;5

repeat f for each step2 episodeg6

takea for s using policy� (s) and observer ands0;7

Q(a; s) ! (1 � � )Q(a; s) + �
�
r +  max

a0
Q(a0; s0)

�
;

8

Examples Examples[f a; s; Q(s; a)g;9

i  i + 1 ;10

until si is terminal ;11

UpdateQ̂e usingExamplesand a relational regression algorithm to produceQ̂e+1 ;12

e  e + 1 ;13

until done ;14

8 Transfer Learning

This section of the chapter chapter focuses on transfer learning (TL) and its relationship
to generalization and abstraction. The interested reader is referred elsewhere [44] for a
more complete treatment of transfer in RL.

8.1 Transfer Learning Background

All transfer learning algorithms for reinforcement learning agents use one or more
source tasksto better learn in atarget task, relative to learning without the bene�t of
the source task(s). Transfer techniques assume varying degrees of autonomy and make
many different assumptions. For instance, one way TL algorithms differ is in how they
allow source and target tasks to differ. Consider the pairs of MDPs represented in Fig-
ure 20. The source and target tasks could differ in any portion of the MDP: the transition
function,T, the reward function,R, what states exist, what actions the agent can per-
form, and/or how the agent represents the world (the state isrepresented here in terms
of state variableshx1; x2; : : : ; xn i in the source task MDP andhx1; x2; : : : ; xm i in the
target task MDP).

The use of transfer in humans has been studied for many years in the psychological
literature [34, 47]. More related is sequential transfer between machine learning tasks
(c.f., [48]), which allows the learning of higher performing classi�ers with less data.
For instance, one could imagine using a large training corpus from a newspaper to help
learn a classi�er such that when the classi�er is presented with training examples from
a magazine, it can learn with fewer examples than if the newspaper data had not been
used. Another common approach is that of learning to performmultiple tasks simulta-
neously (c.f., [8]). The motivation in this case is that a classi�er capable of performing
multiple tasks in a single domain will be forced to capture more structure of the domain,
performing better than if any one classi�er was trained and tested in isolation.
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8.2 Transfer as Generalization

Generalization may be thought of as the heart of machine learning: given a set of data,
how should one perform on novel data? Such questions are prevalent in RL as well. For
instance, in a continuous action space, an agent is unlikelyto visit a single state more
than once and it must therefore constantly generalize its previous data to predict how to
act.

Transfer learning may be thought of as a different type of generalization, where the
agent must generalize knowledgeacross tasks. This section examines two strategies
common to transfer methods. The �rst strategy is to learn some low-level information
in the source task and then use this information to better bias learning in the target task.
The second strategy is to learn something that is true for thegeneral domain, regardless
of the particular task in question.

Example Domain: Keepaway One popular domain for demonstrating TL in RL tasks
is that ofKeepaway[37], a sub-task of the full 11 vs. 11 simulated soccer, whichuses the
RoboCup Soccer Server [27] to simulate sensor and actuator noise of physical robots.
Typically, n teammates (thekeepers) attempt to keep control of the ball within a small
�eld area, while n � 1 teammates (thetakers) attempt to capture the ball or kick it
out of bounds. The keepers typically learn while the takers follow a �xed policy. Only
the keeper with the ball may select actions intelligently: all keepers without the ball
always executes agetopen action, where they attempt to move to an area of the �eld
to receive a pass.

Keepers learn to extend the average length of an episode overtime by selecting be-
tween executing thehold ball action (attempting to maintain possession), or they may
pass to a teammate. In 3 vs. 2 Keepaway, there are three keepers andtwo takers, and
thus the keeper with the ball has 3 macro2 actions (hold, pass to closest teammate, and

2 Note that because the actions may last more than one timestep, Keepaway istechnically an
SMDP, rather than an MDP, but such distinction is not critical for the purposes of this chapter.
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Fig. 21. 3 vs. 2 Keepaway uses multiple distances and angles to represent state, enumerated in
Table 1.

pass to second closest teammate). The keeper with the ball represents its state with 13
(rotational invariant) state variables, shown in Figure 21. This is also a deictic represen-
tation, similar to the one discussed in Section 6.1, becauseplayers are labeled relative to
their distance to the ball, rather than labeled by jersey number (or another �xed scheme).

The 4 vs. 3 Keepaway task, which adds an additional keeper andtaker, is more
dif�cult to learn. First, there are more actions (the keeperwith the ball selects from 4
actions) and keepers have a more complex state representation (due to the extra players,
the world is described by 19 state variables). Second, because there are more players
on the �eld, passes must be more frequent. Each pass has a chance of being missed by
the intended receiver, and thus each pass brings additionalrisk that the ball will be lost,
ending the episode.

Given these two tasks, there are (at least) two possible goals for transfer. First, one
may assume that a set of keepers have trained on the source task. Considering this
source task training a sunk cost, the goal is to learn better/faster on the target task by
using the source task information, compared to learning thetarget task while ignoring
knowledge from the source task. A second, more dif�cult, goal is to explicitly account
for source task training time. In other words, the second goal of transfer is to learn
the source task, transfer some knowledge, and then target task better/faster than if the
agents had directly trained only on the target task.

Transferring Low-Level Information: Ignoring novel struc ture When considering
transfer from 3 vs. 2 to 4 vs. 3, one approach would be to learn aQ-value function
in the source task and then copy it over into the target task, ignoring the novel state



Description 3 vs. 2 and 4 vs. 3 State Variables
3 vs. 2 state variable 4 vs. 3 state variable

dist (K 1 ; C) dist (K 1 ; C)
dist (K 1 ; K 2) dist (K 1 ; K 2)
dist (K 1 ; K 3) dist (K 1 ; K 3)

dist (K 1 ; K 4 )
dist (K 1 ; T1) dist (K 1 ; T1)
dist (K 1 ; T2) dist (K 1 ; T2)

dist (K 1 ; T 3 )
dist (K 2 ; C) dist (K 2 ; C)
dist (K 3 ; C) dist (K 3 ; C)

dist (K 4 ; C )
dist (T1 ; C) dist (T1 ; C)
dist (T2 ; C) dist (T2 ; C)

dist (T 3 ; C )
Min(dist (K 2 ; T1), dist (K 2 ; T2)) Min(dist (K 2 ; T1), dist (K 2 ; T2), dist (K 2 ; T 3 ))
Min(dist (K 3 ; T1), dist (K 3 ; T2)) Min(dist (K 3 ; T1), dist (K 3 ; T2), dist (K 3 ; T 3 ))

Min(dist (K 4 ; T 1 ), dist (K 4 ; T 2 ), dist (K 4 ; T 3 ))
Min(ang(K 2 ; K 1 ; T1), ang(K 2 ; K 1 ; T2)) Min(ang(K 2 ; K 1 ; T1), ang(K 2 ; K 1 ; T2),

ang (K 2 ; K 1 ; T 3 )
Min(ang(K 3 ; K 1 ; T1), ang(K 3 ; K 1 ; T2)) Min(ang(K 3 ; K 1 ; T1), ang(K 3 ; K 1 ; T2),

ang (K 3 ; K 1 ; T 3 ))
Min(ang (K 4 ; K 1 ; T 1 ), ang (K 4 ; K 1 ; T 2 ),

ang (K 4 ; K 1 ; T 3 ))

Table 1.This table lists the 13 state variables for 3 vs. 2 Keepaway and the 19 state variables for
4 vs. 3 Keepaway. The distance between a and b is denoted asdist (a; b); the angle made by a,
b, and c, where b is the vertex, is denoted byang(a; b; c); and values not present in 3 vs. 2 are
in bold. Relevant points are the center of the �eldC, keepersK 1-K 4 , and takersT1-T3 , where
players are ordered by increasing distance from the ball.

variables and actions. This is similar to the idea of domain hiding, discussed earlier in
Section 4.2. For instance, thehold action in 4 vs. 3 can be considered the same as the
hold action in 3 vs. 2. Likewise, the 4 vs. 3 actionspass to closest teammate and
pass to second closest teammate may be considered the same as the 3vs. 2 actions
pass to closest teammate andpass to second closest teammate. The “novel” 4 vs. 3
action,pass to third closest teammate, is ignored. Table 1 shows the state variables
from the 3 vs. 2 and 4 vs. 3 tasks, where the novel state variables in the 4 vs. 3 task are
in bold.

This is precisely the approach used inQ-value Reuse[45]. Results (reproduced in
Table 2) show that the Q-values saved after training in the 3 vs. 2 task can be success-
fully used directly in the 4 vs. 3 task by ignoring the novel state variables and actions.
Speci�cally, the source task action-value function is usedas an initial bias in the target
task, which is then re�ned over time with SARSA learning (e.g., Q-values for the novel
4 vs. 3 action are learned, and existing Q-values are re�ned). Column 2 of the table
shows that the source task knowledge can be successfully reused, and column 3 shows
that the total training can be successfully reduced via transfer.



Lazaric et al. [23] also focuses on transferring very low-level information by using
source taskinstancesin a target task. After learning one or more source tasks, some
experience is gathered in the target task, which may have a different state space or
transition function, but the state variables and actions must remain unchanged. Saved
instances (that is, observedhs; a; r; s0i tuples) are compared to recorded instances in
the target task. Source task instances that are very similar, as judged by their distance
and alignment with target task data, are transferred. A batch learning algorithm (Fit-
ted Q-iteration[15], which uses instance-based function approximation, then uses both
source instances and target instances to achieve a higher total reward (relative to learn-
ing without transfer).

Region transfer, introduced in the same chapter [23], calculates the similarity be-
tween the target task and different source tasks per sample,rather than per task. Thus,
if source tasks have different regions of the state space which are more similar to the
target, only those most similar regions can be transferred.In this way, different regions
of the target task may reuse data from different source tasks, and regions of the target
task that are completely novel will use no source task data. Although this work did
not use Keepaway, one possible example would be to have source tasks with different
coef�cients of friction: in the target task, grass conditions in different sections of the
�eld would dictate which source tasks(s) are most similar and where data should be
transferred from.

Transferring Low-Level Information: Mapping novel structu re Inter-task map-
pings[45] allow a TL algorithm to explicitly state the relationship between different
state variables and actions in the two tasks. For instance, the novel 4 vs. 3 action,pass
to third closest teammate, may be mapped to the 3 vs. 2 actionpass to second closest
teammate. When such an inter-task mapping is provided (and iscorrect), transfer may
be even more effective than if the novelty is ignored. Such anapproach generalizes the
source task knowledge to the target task. By generalizing over different target task state
variables and actions, the TL method can initialize all target task Q-values to values
learned in the source task, biasing learning and resulting in signi�cantly faster learning.
The Value Function Transfer method in Table 2 uses inter-task mappings (columns four
and �ve), and outperforms Q-value Reuse, which had ignored novel state variables and
actions.

While inter-task mappings are a convenient way to fully specify relationships be-
tween MDPs, it is possible that not enough information is known to design a full map-
ping. For instance, an agent may know that a pair of state variables describe “distance
to teammate” and “distance from teammate to marker,” but theagent is not toldwhich
teammate the state variables describe.Homomorphisms[31] are a different abstraction
that can de�ne transformations between MDPs based on transition and reward dynam-
ics, similar in spirit to inter-task mappings, and have beenused successfully for trans-
fer [35]. However, discovering homomorphisms is NP-hard [32]. Work by Soni and
Singh [35] supply an agent with a series of possible state transformations (i.e., potential
homomorphisms) and an inter-task mapping for all actions. One transformation,X , ex-
ists for every possible mapping between target task state variables to source task state
variables. The agent learns in the source task as normal. Then the agent must learn the



Transfer Results between 3 vs. 2 and 4 vs. 3 Keepaway
Q-value Reuse Value Function Transfer

# of 3 vs. 2 Avg. 4 vs. 3 Avg. Total Avg. 4 vs. 3 Avg. Total
Episodes Time (sim. hours)Time (sim. hours)Time (sim. hours)Time (sim. hours)

0 30.84 30.84 30.84 30.84
10 28.18 28.21 24.99 25.02
50 28.0 28.13 19.51 19.63
100 26.8 27.06 17.71 17.96
250 24.02 24.69 16.98 17.65
500 22.94 24.39 17.74 19.18

1,000 22.21 24.05 16.95 19.70
3,000 17.82 27.39 9.12 18.79

Table 2. Results in columns two and three (reproduced from [45]) show learning3 vs. 2 for
different numbers of episodes and then using the learned 3 vs. 2 CMACdirectly while learning
4 vs. 3. Minimum learning times for reaching a preset 4 vs. 3 performance threshold are bold.
All times reported are “simulator hours,” the number of playing hours simulated, as opposed
to wall-clock time. The top row of results shows the time required to learn in the 4vs. 3 task
without transfer. As source task training time increases, the required target task training time
decreases. The total training time is minimized with a moderate amount of source task training.
The results of using Value Function Transfer (with inter-task mappings) are shown in columns
four and �ve. Q-value Reuse provides a statistically signi�cant bene�t relative to no transfer, and
Value Function Transfer yields an even higher improvement.

correct transformation: in each target task states, the agent must choose to randomly
explore the target task actions, or choose to take the actionsuggested by the learned
source task policy using one of the existing transformations, X . Q-learning allows the
agent to select the best state variable mapping, de�ned as the one which allows the
player to accrue the most reward, as well as learn the action-values for the target task.
Later work by Sorg and Singh [36], extend this idea to that of learning “soft” homomor-
phisms. Rather than a strict surjection, these mappings assign probabilities that a state
in a source task is the same as a state in the target task. This added �exibility allows the
authors to provide bounds on their algorithm's performance, as well as show that such
mappings are indeed learnable.

TheMASTER algorithm [42] transfers instances similar to Lazaric [23], except that
novel state variables and actions may be explicitly accounted for by using inter-task
mappings.MASTER uses an exhaustive search to generate all possible inter-task map-
pings, and then selects the one that best describes the relationship between the source
and target task, learning the best inter-task mapping. Then, data from the source task
is mapped to the target task, and learning can continue to re�ne the source task data.
Although this method currently does not scale to Keepaway (due to its reliance on
model-learning methods [19] for continuous state variables), but is similar in spirit to
the above two methods.

Transferring High-Level Information This section discusses four methods which
transfer higher-level information than the previously discussed transfer methods. One



example is anoption, where a set of actions are composed into a single high-level
macro-action that the agent may choose to execute. Thus far,researchers have not quan-
ti�ed “high-level” and “low-level” information well, nor have they made convincing
arguments to support the claim that high-level informationis likely to generalize to dif-
ferent tasks within a similar domain. However, this claim makes intuitive sense and is
an interesting open question.

Section 7 introduced Relational RL (RRL). Recall that the propositional representa-
tion allows state to be discussed in terms of objects and their properties. Actions in the
RRL framework typically have pre- and post-conditions overobjects. When the state
changes such that there are more or fewer objects, learned Q-values for actions may
be very similar, as the object on which the action acts has notchanged. One example
of such transfer is by Croonenbourghs et al. [10], where they�rst learn a source task
policy with RRL. This source task policy then generates state-action pairs, which are
in turn used to build a relational decision tree. This tree predicts which action would
be executed by the policy in a given state. As a �nal step, the trees producerelational
options. These options are directly used in the target task with the assumption that the
tasks are similar enough that no translation of the relational options is necessary.

Konidaris and Barto [22] also consider transferring options, but do so in a different
framework. Instead of an RRL approach, they divide problemsinto agent-spaceand
problem-spacerepresentations [21]. Agent-space de�nes an agent's capabilities that
remains �xed across all problems (e.g., it represents a robot's physical sensors and ac-
tuators); agent-space may be considered a type of domain hiding. The problem-space
may change between tasks (e.g., there may be different room con�gurations in a navi-
gation task). By assuming “pre-speci�ed salient events,” such as when a light turns on
or an agent unlocks a door, agents may learn options to achieve these events. Options
succeed in improving learning in a single task by making it easier for agents to reach
such salient events (which are assumed to be relevant for thetask being performed). Ad-
ditionally, the agent may train on a series of tasks, learning options in both agent- and
problem-space, and reusing them in subsequent tasks. The authors suggest that agent-
space options will likely be more portable than problem-space options, and it is likely
that problem-space options will only be useful when the source and target tasks are very
similar.

Torrey et al. [49] also consider transferring option-like knowledge. Their method
involves learning astrategy, represented as a �nite-state machine, which can be ap-
plied to a target task with different state variables and actions. Strategies are learned in
the source task and then remapped to the target task with inter-task mappings. These
transferred strategies are then demonstrated to the targettask learner. Instead of ex-
ploring randomly, the agent is forced to execute any applicable strategy for the �rst
100 episodes, learning to estimate the value of executing different strategies. After this
demonstration phase, agents may then select from all of the MDP's actions. Experi-
ments show that learning �rst on 2-on-1 BreakAway (similar to 2 vs. 1 Keepaway, but
where the “keepers” are trying to score a goal on the “takers”), improves learning in
both 3-on-2 Breakaway and 4-on-3 BreakAway.



8.3 Abstraction in Transfer

The majority of the TL methods in the above section focused onthe �rst goal of transfer:
showing that source task knowledge can improve target task learning, when the source
task is treated as a sunk cost. (An exception is Taylor et al. [45], where they demonstrate
that learning a pair or sequence of tasks can be faster than directly learning the target
task.) In this section, we discuss abstraction in the context of transfer. Speci�cally, if
the source task is an abstract version of the target task, it may be substantially faster
to learn than the target task, but still provide the target task learner with a signi�cant
advantage.

Taylor and Stone [43] introduced the notion ofinter-domaintransfer in the context
of Rule Transfer(similar in spirit to Torrey et al.'s method [49]). The chapter showed
two instances where transfer between very different domains was successful. In both
cases, the source tasks are discrete and fully observable, and one is deterministic. The
target task was 3 vs. 2 Keepaway, which has continuous state variables, is partially
observable, and is stochastic (due to sensor and actuator noise).

One of the source tasks is shown in Figure 22. In this task, theplayer begins at one
end of the 25� 25 board and the opponent begins at the opposite end of the board. The
goal of the player is to reach the opposite end of the board without being touched by
the opponent (either condition will end the episode). The player's state is represented
by three state variables and it has three actions available.The player may move North
(forward) or perform a knight's jump: North + East + East, or North + West + West.
Although this task is very different from Keepaway, there are some important similar-
ities. For instance, when the distance between the keeper with the ball and the closest
taker is small, the player is likely to lose the ball (and thusend the episode). In Knight's
Joust, when the distance between the player and the opponentis small, the episode is
also likely to end.

Most signi�cant with respect to transfer is the fact that an agent sees an average
of only 600 distinct states over a 50,000 episode learning trial of Knight's Joust. This
makes learning a good source task policy relatively easy: learning in the Knight's Joust
abstraction takes on the order of a minute, whereas learningin 3 vs. 2 Keepaway takes
hours of wall clock time. Using an abstract source task that allows very fast learning
makes the task of reducing the total training time must easier: if the goal is to learn 3
vs. 2 Keepaway, it makes sense to spend a minute or two learning an abstract source
task because it can save hours of learning in the target task (relative to directly learning
3 vs. 2 Keepaway).

While this result is encouraging, it can be regarded as a proofof concept: both
source tasks used by Taylor and Stone [43] were carefully designed to be useful for
transfer into the Keepaway task. The idea of constructing sequences of tasks which are
fast to learn is very appealing [4, 41], but there are currently no concrete guidelines.
This is due, in part, to the absence of a general method for deciding when transfer from
a given source task will help learn a target task.

For instance, consider an agent that �rst learns the game of “Giveaway,” where the
goal is to loose the ball as fast as possible. If the agent thentransfers this knowledge
to Keepaway, it will perform worse than if it had ignored its previous knowledge [45].
While this may appear “obvious” to a human, such differences may be opaque to an
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Fig. 22.Knight's Joust: The player attempts to reach the goal end of a a 25� 25 grid-world while
the opponent attempts to touch the player.

agent and its learning algorithm. In the above example, the source task and target task
differ only in reward function: the transition model, statevariables, actions, etc. are all
identical. Similarly, if an agent learns a speci�c path out of a maze in a source task and
then uses this policy to navigate a target task maze, a malicious designer of the target
task may make the source task policy perform arbitrarily poorly. Protecting against such
negative transfer is an important open question.

9 Conclusions

In this survey we investigated generalization and abstraction in Reinforcement Learn-
ing. We provided the fundamentals of RL, introduced de�nitions of generalization and
abstraction, and elaborated on the most common techniques to achieve both. These
techniques include function approximation, hierarchicalreinforcement learning, rela-
tional reinforcement learning and transfer learning. Withnovel and existing examples
from the literature, we illustrated these techniques and provided many references to the
literature. Our hope is that this chapter has provided a solid introduction and structure
to the concepts of abstraction and generalization in RL, encouraging additional work in
this exciting �eld.
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