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Abstract. In this paper we survey the basics of reinforcement learning, gener-
alization and abstraction. We start with an introduction to the fundamentals of
reinforcement learning and motivate the necessity for generalizatibalzstrac-
tion. Next we summarize the most important techniques available to adiodve
generalization and abstraction in reinforcement learning. We discsssfoac-

tion approximation techniques and delve into hierarchical, relational ansféra
learning. All concepts and techniques are illustrated with examples.

1 Introduction

In this chapter we provide an introduction to the conceptgeoferalization and abstrac-
tion in reinforcement learning (RL). Abstraction is a teitjue to reduce the complexity
of aproblem by Itering outirrelevant properties while perving all the important ones
necessary to still be able solve a given problem. Genetalizés a technique to apply
knowledge previously acquired to unseen circumstancesteneé that knowledge be-
yond the scope of the original problem. Humans show greadhibify in abstracting
and generalizing knowledge in everyday life. RL needs ab#ittn and generalization
as well to deal successfully with contemporary technolalgiballenges, given the huge
state and action spaces that characterize real world pnsblRecently, abstraction and
generalization have received signi cant attention in thechine learning research com-
munity, resulting in a variety of techniques.

We start by introducing the preliminaries of RL itself in 8en 2. We will discuss
Markov decision processes, policy and value iteration andefifree solution tech-
niques. In Section 3 we de ne both abstraction and genextadia, capturing common
features of both found in different de nitions in literagjrand then describe different
operators in a concrete domain, the video-game WargusioBetgives a concise in-
troduction to function approximation, one of the most comiyiaused types of methods
in RL for generalization and abstraction. Sections 6-8 ¢o greater detail discussing
three classes of techniques used for abstraction and digatican in RL: hierarchi-
cal, relational, and transfer learning. In addition to milg the ideas behind each of
these classes of techniques, we present results to assisgither in understanding how
these ideas may be applied in practice, and provide multgferences for additional
exposition. Finally, Section 9 concludes.



The goals of this survey are to provide an introduction tal famework for, dis-
cussing abstraction and generalization in RL domains. Tidexdoes not provide dis-
cussions at an advanced level but merely tries to combinbahies into one coherent
structure, such that newcomers to the eld easily undedstae elementary concepts
of abstraction and generalization in RL and have pointeadlable to more elaborate
and detailed expositions in the literature.

2 Reinforcement Learning

This section introduces basic reinforcement learning epteand notation.

2.1 Markov decision processes

Most RL research is framed as using a Markov decision presgd4DP) [29]. MDPs
are sequential decision making problems for fully obseevatorlds. They are de-
ned by a tuple(sp;t;S; A; T;R). Starting in an initial statsy (or set of states) at
each discrete time-step = 0;1;2;::: an adaptive agent observes an environment

an immediate rewar®R : S | R, that assigns a value or reward for being in that
state, and moves to a new staft depending on a probabilistic transition function
T:S A S! [01]. The probability of reaching stat after executing ac-
tion a in states is denolged ag (s;a;sY). For all actionsa, and all states and s°,
0 T(s;a;89) land g T(S;a;8) = 1. An MDP respects thilarkov prop-
erty. the future dynamics, transitions and rewards fully dependhe current state:
T(St+1]St;a;St 158 15:::0) = T(St+1]St;a) andR(St+1jSt;St 1;:::) = R(St+1).
The transition functiolm and reward functiofR together are often referred to as the
modelof the environment. The learning taskinan MDP isto ndappli : S! A
for selecting actions with maximal expected (discounted)ard. The quality of a pol-
icy is indicated by avalue functionV . The valueV (s) speci es the total amount of
reward which an agent may expect to accumulate over theefustairting from state
and then following the policy . Informally, the value function indicates the long-term
desirability of states or state-action pairs after takimigp iaccount the states that may
follow, and the rewards available in those states. In a distzal in nite horizon MDP,
the expected cumulative reward (i.e., the value functismenoted as:

" #

b3
V(= E ‘R(S)jso = s 1
t=0
A discount factor 2 [0; 1li may be introduced to ensure that the rewards returned
are bounded ( nite) values. The variabledetermines the relevance of future rewards
in the update. Setting to O results in anyopicupdate (i.e., only the immediate reward
is optimized), whereas values closeftwill increase the contribution of future rewards
in the update.
The value for a given policy , expressed by Equation 1, can iteratively be com-
puted by theBellman Equatiori3]. One typically starts with an arbitrarily chosen value



function, and at each iteration for each state S, the value function is updated based
on the immediate reward and the current estimaté af

X
Vis1 (8) = R(s) + T(s; (9):9V, (9 )
s02S
The process of updating state value functions based onntw@sémates of succes-
sor state values is referred tolamotstrapping The depth of successor states considered
in the update can be varied, i.e., one can perform a shallmtstyap where one only
looks at immediate successor states or a deep bootstrap sieressors of successors
are also considered. The value functions of successossteaised to update the value
function of the current state. This is callethackupoperation. Different algorithms use
different backup strategies, e.g., sample backups (sampiegle successor state) or
full backups (sample all successor states).
The solution to an MDP is theptimal policy i.e., the policy that receives the max-
imum reward. The optimal policy (s) is de ned suchthav (s) V (s) for all
s 2 S and all policies . The optimal value function, often abbreviatedvagollowing
Bellman optimality criterion:
" #
X
V()= R(s)+ max T(s;a; )V (Y (3)
s02s
Solving Equation 3 can be done in an iterative manner, sirtélahe computation

of the value function for a given policy such as expressedgudtion 2. The Bellman
optimality criterion is turned into an update rule:

" #
X
Vi (8) = R(s)+ max T(s;a; sV, (s9) (4)
2A s02s
The optimal action can then be selected as follows:
2 3
X

(s) = arg max 4R(s) + T(s;a;QV (593 (5)

s%2s
Besides learning state-values, one can also de ne staitena@lue functions, also
calledaction-value functionsor Q-functions Q-functions map state-action pairs to val-
ues,Q :' S A ! R. They re ect the long term desirability of performing aatia
in states, and then performing policy thereafter. Learning Q-functions is particularly
useful whenT is unknown. The Q-function is de ned as follows:

X
Q (s;a) = R(s;a)+ T(s;a; DV (Y (6)
s02S
The optimal policy selects the action which maximizes the optimal action value
functionQ (s;a) for each state 2 S:

(s)=argmax Q (s;a) (7)



Algorithm 1: Policy Iteration

1 REQUIRE initialize V (s) and (s) arbitrarily;

2 POLICY EVALUATION;

3 repeat

4 =0;

5 foreachs 2 S do

6 v =V(s); p

7 V()= R(s;i (N+ o5 T(S; (8);8IV(SY;
8 =max( ; jv V(9)j);

9 end

10 until <

11 POLICY IMPROVEMENT;
12 policy-stable = true;

13 foreachs 2 S do

14 b= (s);

P
15 (s) =argmax . R(s;a)+ s T(sas)V(s) ;
16 if b6 (s) then policy-stable = false
17 end

18 if policy-stablethen stopelsego to POLICY EVALUATION

2.2 Solution techniques

When an environment's model (i.e., transition functibrand reward functiorR) is
known, the optimal policy can be computed using a dynamiggamming approach,
such as irpolicy iterationandvalue iteration Policy iteration [18] consists of two steps,
a policy evaluationand policyimprovemenstep. It starts with an arbitrary policy and
value functions. It then updates the value functions unigdlergiven policy (the evalu-
ation step), and uses the new value functions to improveolisyp(the improvement
step). Each policy is guaranteed to be a strict improvemest the previous one. The
algorithm requires an in nite number of iterations to corye, but in practice the algo-
rithm can be stopped when value functions only change by # amaunt. A complete
description is given in Algorithm 1.

The drawback of policy iteration is that it requires a conplevaluation of the
current policy before improvements are made. Another pdigiis to make improve-
ments after a single sweep (a single backup of a state). Entgcplar case is called
value iteration[3]. Value iteration (or greedy iteration) starts with atbignary action-
value function and for each state it iterates over all ast{@mlike policy iteration which
only evaluates the action as indicated by the policy) andtgsithe action-value func-
tion. The value iteration backup is identical to the poliggleation backup except that
it requires the maximum to be taken over all actions. Sintdgyolicy iteration, the al-
gorithm can be stopped when the change in policy is withinreazebound. Algorithm
2 gives a complete description of value iteration.

There exist several model-based learning methods, suckresQ [38, 51] and R-
Max [6], but we will not go into much detail here because we rast interested in
domains where the model is assumed to be both unknown andtoplex to easily



Algorithm 2: Value Iteration
1 REQUIRE initialize V (s) arbitrarily;

2 repeat

3 =0;

4 foreachs 2 S do

5 v=V(s);

6 foreacha 2 A(s) do p
7 Q(s;a) = R(s;a)+ o5 T(Si@;SYV(sH)
8 end

9 V (s) = max a1 Q(s; a);

10 =max( ; jv V(9)i)
11 end

12 until < ;

learn. When the model of the environment is unknown, as itllysig we can use
RL as a viable alternative. RL does not depend on a model theraollects samples
from the environment to estimate the environment's modeéeré&fore, the crucial dis-
tinction between model-free and model-based methods ighikarst samples future
states whereas the second does a full sweep of successs. Statough exploration
the reinforcement learner gathers data (i.e., rewards afutlef states) and uses this
to learn a policy. An important issue that occurs is the epgtlon and exploitation
dilemma, i.e., when to cease exploration and to start etipdpacquired knowledge.
Various exploration and exploitation strategies existhsas -greedy and Boltzmann
exploration. For a thorough overview, we refer interesieaders elsewhere [52, 39].
Temporal difference learning methods such as Q-learnify §d SARSA [33] are
model-free solution methods. The algorithms are desciibbddtail in [39]. The update
rule for one of the most popular algorithnms)e-stefQ-learning is:

Qas)! (I Q@9+ R(s;a)+ maxQ(a’s) (8)

where s the step-size parameter, anthe discount-rate. This algorithm is proven to
converge to an optimal policy in the limit (under reasonataleditions). Unfortunately,
for many complex, real-world problems, solving the MDP ipnactical and complexity
must be reduced in order to keep learning tractable.

In the following sections we will discuss several ways touaglthe search space, so
that learning with RL is still possible in more challengingndains (i.e., domains with
large or in nite state spaces).

3 Abstraction and Generalization

In order to make RL feasible in complex domains, abstraatiogeneralization opera-
tors are often applied to make the problem tractable. Werithesthese operators in the
current section and then give concrete examples in thedoipsection.



Abstraction and generalization are important conceptstirtial intelligence (Al).
Some claim that the ability to abstract and generalize issence of human intelli-
gence [7] and that nding good representations is the pynwdrallenge in designing
intelligent systems. However, systems that learn and descoseful representations
automatically are scarce. Instead, this problem is oftekieéd by the human designer.

A consistent de nition of abstraction in the Al literature mot available: typically
the de nitions are tailored to speci ¢ sub elds of Al, e.glgnning and problem solving
[17], theorem proving [16], knowledge representation .(espatial and temporal rea-
soning), machine learning, and computer vision [53]. Theegal principle underlying
all these de nitions is that an abstraction operation mappaesentation of a problem
onto a new representation so as to simplify reasoning whiésgyving useful proper-
ties. One only considers what is relevant and ignores masyyitaportant details for
solving a particular task. Readers interested in a survayaté abstraction techniques
in MDPs, as well an initial attempt to unify them, are referedsewhere [24].

In problem solving and theorem proving, abstraction maydseeiated with a trans-
formation of the problem representation that allows a theoto be proved (or a prob-
lem to be solved) more easily with reduced computationalpexity. This form of
abstraction rst abstracts a goal, proves or solves theatistd goal, and then uses the
structure of this abstracted proof to help construct th@fpod the original goal. This
method relies on the assumption that the structure of thigaaibsd proof is similar to
the structure of the original goal. Another form of abstiatt as used in knowledge
representation, machine learning, and computer visiaryges more on the conceptu-
alization of a domain, i.e., nding appropriate conceptdeatures of a domain. In this
paper we will adopt the following de nition for abstraction

De nition 1 (Abstraction). An abstraction operation changes the representation of an
object by hiding or removing less critical details while pegving desirable properties.
By de nition, this implies loss of information.

This de nition is rather general and covers several diffét@bstraction operations.
In this paper we will adopt Zucker's taxonomy [53] to furtheategorize the different
abstraction types. These abstraction operations are deand explained with the help
of a concrete example in the next section.

For generalization we employ the following de nition:

De nition 2 (Generalization). A generalization operation de nes similarities between
objects. This operation does not affect the object's regmétion. By de nition, this
implies no loss of information.

For example, we may hypothesize that all rectangles ardasiimi some way. A
strict de nition of generalization states that all rectéeware a subset of its generalized
hypothesis (e.g., all rectangles have 4 sides), but tylgicaimachine learning, hypoth-
esis are approximated and allow errors. For example, wtetmgtthat all rectangles
have equal length sides, it is possible that some rectaagbesutside of the hypothesis
space (namely, all non square rectangles). Therefore, kewda nition of generaliza-
tion states that we have good evidence that all rectanglesvedn a similar way. The
generalization power measures the quality of the hypath@sfuture examples.



We will next describe abstraction and generalization oppaties for RL in a con-
crete example, namely for learning a policy for a virtualr@ge the computer game of
Wargus.

4 An lllustrative Example
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Fig. 1. A complex learning task Fig. 2. A naive state representation, where

rows represent the observations of states (in
this case, a pixel) and the columns represent
the features used to describe the world

One example application that can bene t from reinforcemeatning is computer
games. Figure 1 is a screen shot of the computer game Wargilss [gure we see an
agent that is surrounded by bushes and buildings. This ‘agesponsibility (a peasant
in the game) is a typical resource gathering task: it musetta the goldmine (situated
in the top right corner) and gather gold. We will tackle tlgarning task within the RL
framework. The action space will contain the actions for ingun all directions. We
assume that the transition function is unknown due to theptexrand dynamic nature
of the game environment. We de ne the agent's reward sigmaktas follows: a small
negative reward for each step and a positive (or zero) rewhesh completing the task.
The dif cult part is nding an appropriate state represdiua for this task. The state
complexity in our world can be expressed iy, wheren represents the number of
grid cells andm the number of objects in the world. The state complexity istexpo-
nential in the dimension of the world and polynomial in thenter of objects. A naive
state representation (see Figure 2) for our example apiplicavould be to consider the
smallest particle of this world (in this case a pixel in thidithensional computer game
world with dimensiorb00 500) to be a single grid cell, and then assuming that each



grid cell can be part of any of ve different objects (whichdkeady a simpli cation).
For example, in Figure 2 the rst row indicates that the rdkel is part of a forest
object. When using this representation, learning a poliey tlrects the agent to the
goldmine would be infeasible, due to the large state spacgejning the value function
to contain2500@ distinct values. For any complex computer game, when miaglétie
world described as above, none of the standard RL approachesnverge to a decent
policy in a reasonable amount of time. Rather than devisaw update rules for RL,
a more promising approach is to nd more compact task reptasiens (i.e., make the
problem space simpler) and generalize over similar statesther words, we need to
apply appropriate abstractions and generalizations. Wenait describe ve different
abstraction operations as de ned by Zucker [53] that cafestawn the problem com-
plexity. We will apply these ve techniques consecutivetydur challenging problem
to reduce complexity.

4.1 Domain Reduction

Domain Reduction is an abstraction operation that redueessgd the domain (i.e.,
content or instances) by grouping content together. Comégers to the observations
of states (i.e., the row vectors in our world matrix). Before evaluated each single
pixel, so that our world matrix contained 25000 state oleteyas (one for each grid
cell in our world). The matrix in Figure 2 is a reformulatiohtbe image in Figure 1:
it applies a different notation for the same object withasihg any information. We
can reduce the content, i.e., reduce the number of statevalisas by making sets of
grid cells indistinguishable. In our example we can choosgroup neighboring pixels
together to form a larger prototype grid cell. As a resulg World is divided in larger
grid cells, as illustrated in Figure 3. An observation in exorld matrix now covers
several pixels, and therefore attribute values are rdakdgpercentages (averages over
the covered pixels) rather than booleans (see Figure 4)ntihder of pixels grouped
together to form a grid cell can be increased, but a coarser @i the world necessitates
information loss. The tradeoff between information losd #re quality of the learned
policy can be tuned, depending on task requirements.

4.2 Domain Hiding

Domain hiding is an abstraction operation that hides pathefdomain, focusing on
relevant content or objects in the domain. This is one of tlestngommon form of
abstraction. As mentioned before, content refers to the staservations (row vectors
in our matrix). Rather than reducing the number of state mlasens (by grouping
them), domain hiding simply ignores less relevant statenlagions. For example, in
our task we want the agent to learn a policy that directs ihéogold mine. Therefore,
we are not necessarily interested in some parts of the wand,we hide these state
observations. We take the world that was the result of domednction as our input
and apply domain hiding. The result is shown in Figure 5. Inroatrix representation,
a domain hiding operation can be performed by deleting ®bsiens, whereas domain
reduction averages observations together.
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4.3 Co-Domain Hiding

Co-domain hiding is an abstraction operation that hide$ plathe co-domain (i.e.,
description) of an object by selectively paying attentiosbsets of useful features in a
given task. With the co-domain, we refer to the features ofamrld. In the state matrix,
this is represented by the column vectors. Co-domain hijngres columns that are
not relevant for the task. For example, in Figure 7, the saatlfe is removed from the
description since it is believed this feature does not doute to an improvement for
the agent's policy. Notice that theandin Figure 7 and the sand column in Figure 8's
matrix have been removed.
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4.4 Co-Domain Reduction

Co-domain reduction is an abstraction operation that resipart of the co-domain (i.e.,
description) by making sets of attribute values indistisgable. This implies reducing
the range of values an attribute may take. In Figure 8 we sabudé values ranging
from O to 1. We can apply abstractions by reducing the ranggtobute values.

This can be achieved by applying some threshold functigadiive mapping). For
example, if a certain cell is covered with an object by moentB0 percent, in our new
world representation this cell is now covered completelthuiiis object, whereas ob-
jects that cover less than 50 percent are abstracted awaytlfi@matrix representation
(see Figure 10). Effectively, we transform real numbess (percentages of objects in
a grid cell) to boolean values, just as we saw in Figure 2, butthe boolean values do
not correspond to pixels, but to composite grid cells.

4.5 Domain Aggregation

Domain Aggregation is an abstraction operation that aggesg/combines) parts of the
domain (i.e., content). Content (or objects) are groupgdtteer and form a new object
with its own unique properties and parameters. In our exanwp can choose to group
objects together that obstruct the agent such as foresistigies or rocks. We group
these objects together to form a complete new object, naarelybstacle (see Figure
11).

4.6 Generalization

A generalization operation is different from an abstractiperation in that it does not
change an object's representation and, therefore, dodgg@any information. Instead
it claims generalities between objects, leaving the oabobjects untouched. In our
example we can make a generalized hypothesis that foredtsoaks are equivalent
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in that they obstruct the agent from moving there. This issillated in Figure 13: our
generalized hypothesis claims that the light-grey parth@fvorld are equivalent (i.e.,
trees and rocks combined), and similarly for the dark-gi@yspof the world (i.e., grass
and sand combined). The effect is (roughly) similar to thfeatfof an aggregation
operation in Figure 11. However, it is possible that at somiatpour generalization
that forests and rock are equivalent proves to be faulty, th@yagent has learned to
chop trees down so it can move through forest locations.drctse of generalization,
we can simply remove or reformulate our hypothesis and metuthe original world,
whereas with abstraction the original information is lasd &e can not turn back to the
original world. In our example (see Figure 14), it is uncledrether an obstacle used
to be part of a forest or rock. We threw away that informatiomirty our abstraction
process. Therefore, we claim that generalization is moséble and less conclusive
than abstraction.



Fig. 13.Generalization Fig. 14.Difference between abstraction and
generalization: with an abstraction opera-
tion, information is lost.

5 Function Approximation

The previous section introduced many different genertiimaand abstraction opera-
tors. In this section, we discuss a commonly used approaurennformation gathered
by an agent is used to tune a mathematical function thatsepte the agent's gathered
knowledge.

In tasks with small and discrete state spaces, the functio and can be repre-
sented in a table, such as discussed in the previous seidtimrever, as the state space
grows using a table becomes impractical (or impossibledfdtate space is continu-
ous). In such situations, some sortfohction approximators necessary, which allow
the agent to use data to estimate previously unobsesy@) [fairs.

How to best choose which function approximator to use, or tweet its parame-
ters, is currently an open question. Although some work inRL, 24, 25] has taken a
more systematic approachesstate abstractiongalso calledstructural abstractiong
the majority of current research relies on humans to help di@arning agent by care-
fully selecting a function approximator with parameterpraypriate for a given task. In
the remainder of this section we discuss three popular fumepproximators: Cere-
bellar Model Arithmetic Computers (CMACS), neural netwsrland instance-based
approximation.

The rst two methods, CMACs and neural networks, may be aergd both ap-
proximation and generalization operators. Rather thaingahe data gathered in the
world, the agent tunes its function approximator and ddsalata, losing some infor-
mation (abstraction), but it is then able to calculate theieaf the function for val-
ues that have not been experienced (generalization). Matlyauds for instance-based
approximation also discard data, but some do not; whileraifaince-based function
approximators are generalizers, not all are abstractors.



Cerebellar Model Arithmetic Computers CMACSs [1] take arbitrary groups of con-
tinuous state variables and lay in nite, axis-paralléhtijs over them (see Figure 15(a)).
This allows discretization of continuous state space iites tvhile maintaining the ca-
pability to generalize via multiple overlapping tilingsicreasing the tile widths allows
better generalization; increasing the number of tilindsved more accurate representa-
tions of smaller details. The number of tiles and the widtlthef tilings are generally
handcoded: this sets the centgr,of each tile and dictates which state values will ac-
tivate which tiles. The function approximation is trainegdhanging how much each
tile contributes to the output of the function approximaifinus, the output from the
CMAC is the computed sum:

X
fey= wifi(x) ()

but only tiles which are activated by the current state festigontribute to the sum:

1; if tile i is activated
0; otherwise

fi(x) =

Weights in a CMAC are typically initialized to zero and areaniged over time via
learning.

Arti cial Neural Networks The neural network function approximator similarly al-
lows a learner to approximate the action-value functiomigia set of continuous, real
valued, state variables. Although neural networks have lskewn to be dif cult to
train in certain situations on relatively simple RL probkefb, 30], they have had no-
table successes on some RL tasks [9, 46]. Each input to thralmeiwork is set to the
value of a state variable and each output corresponds totamadctivations of the
output nodes correspond to Q-values (see Figure 15(b) fagmain).

When used to approximate an action-value function, neutalar&s often use non-
recurrent feedforward networks. Each node in the inputrlesygiven the value of a dif-
ferent state variable and each output node corresponds ikdtcalculated Q-value for
a different action. The number of inputs and outputs are tfaisrmined by the task's
speci cation, but the number of hidden nodes is speci edly 4gent's designer. Note
that by accepting multiple inputs the neural network cariheine its output by con-
sidering multiple state variables in conjunction (as ogob® a CMAC consisting of a
separate 1-dimensional tiling for each state variablefi@dmften have either sigmoid
or linear transfer functions. Weights for connections i tietwork are typically initial-
ized to random values near zero. The networks are ofterettaising backpropagation,
where the error signal to modify weights is generated byehening algorithm, as with
the other function approximators.

Instance-based approximation CMACs and neural networks aim to represent a com-
plex function with a relatively small set of parameters et be changed over time. In
contrast, instance-based approximation storsncesxperienced by the agent (i.e.,
hs; a; r; s%) to predict the underlying structure of the environmene@gally, this ap-
proximation method can be used by model-learning methofis[(®, 20]), which learn
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Fig. 15. CMAC's value, shown in (a), is computed by summing the weigiws,from multiple
activated tiles (outlined above with thicker lines). State variables are useteiordne which tile
is activated in each of the different tilings. The diagram in (b) shows twmial feedforward
13-20-3 network, suggesting how Q-values for three actions can Ibelated from 13 state
variables.

to approximatel andR by observing the agent's experience when interacting with a
environment.

Consider the case where an agent is acting in a discreteoanvant with a small
state space. The agent could record every instance thaietiexnced in a table. If the
transition function were deterministic, as soon as the tagbeerved every possible
(s; @) pair, it could calculate the optimal policy. If the tranait function were instead
stochastic, the agent would need to take multiple samplesviery §; a) pair. Given a
suf cient number of samples, as determined by the variand@é resulting ands®,
the agent could again directly calculate the optimal polieydynamic programming.

When used to approximaleandR for tasks with continuous state spaces, using in-
stances for function approximation becomes signi cantlyrendif cult. In a stochastic
task the agent is unlikely to ever visit the same state twidth, the possible exception
of a start state, and thus approximation is critical. Furtfege, since one can never
gather “enough” samples for every, @) pair, such methods generally need to deter-
mine which instances are necessary to store so that the mestguirements are not
unbounded. Creating ef cient instance-based functiorraximators, and their associ-
ated learning algorithms, are topics of ongoing resear&Lin

Now that the basic concepts of abstraction, and generializhfive been introduced
in the context of RL, the next section describes our own daution in the eld of
abstraction and generalization in RL through action abstm via hierarchical RL
techniques. Later sections will then discuss work on geizateon using relational re-
inforcement learning and transfer learning.



6 Hierarchical Reinforcement Learning

There exist many extensions to standard RL that make use afistraction and gener-
alization operators mentioned in Section 4. One such mathbi@rarchical reinforce-
ment learning (HRL), which essentially aggregates actidtiRL is an intuitive and
promising approach to scale up RL to more complex problemdRL, a complex task
is decomposed into a set of simpler subtasks that can bedswldependently. Each
subtask in the hierarchy is modeled as a single MDP and allgppsopriate state, ac-
tion and reward abstractions to augment learning compared at representation of
the problem. Additionally, learning in a hierarchical sgitcan facilitate generaliza-
tion: knowledge learned in a subtask can be transferredhier atubtasks. HRL relies
on the theory of Semi-Markov decision processes (SMDPd) BRIDPs differ from
MDPs in that actions in SMDPs can last multiple time step&ré&fore, in SMDPs ac-
tions can either be primitive actions (taking exactly 1 tistep) or temporally extended
actions. While the idea of applying HRL in complex domainshsas computer games
is appealing, with the exception of [2], there are few stadigt examining this issue.

We adopted a HRL method similar to Hierarchical Semi-Marslearning (HSMQ)
described in [12]. HSMQ learns policies simultaneouslydtbnon-primitive subtasks
in the hierarchy, i.e.Q(p;s; @) values are learned to denote the expected total reward
of performing taskp starting in states, executing actiom, and then following the op-
timal policy thereafter. Subtasks in HSMQ include termim@ipredicates. These parti-
tion the state spac® into a set of active states and terminal states. Subtasksrdgn
be invoked in states in which they are active, and subtasksirtate when the state
transitions from an active to a terminal state. We added eoHBEMQ algorithm de-
scribed in [12] a pseudo-reward function [12] for each ssktdhe pseudo-rewards tell
how desirable each of the terminal states are for this skilb#dgorithm 3 outlines our
HSMQ-inspired algorithm. Q-values for primitive subtasite updated with the one-
step Q-learning update rule, while the Q-values for nomijtive subtasks are updated
based on the rewar(s;a), collected during execution of the subtask and a pseudo
rewardR.

6.1 Reactive Navigation Task

We applied our HSMQ algorithm to the game of Wargus. Inspingthe resource gath-
ering task, we created a world wherein a peasant has to leaawigate to some loca-
tion on the map while avoiding enemy contact (in the game ofgids, peasants have
no means for defending themselves against enemy soldMes® precisely, our sim-
pli ed game consists of a fully observable world thaB® 32 grid cells and includes
two units: a peasant (the adaptive agent) and an enemy isdltiee adaptive agent has
to move to a certain goal location. Once the agent reachgsdtls a new goal is set at
random. The enemy soldier randomly patrols the map and hglbsat the peasant if it
is in ring range. The scenario continues for a xed time qetior until the peasant is
destroyed by the enemy soldier.

Relevant properties for our task are the locations of theg®a soldier, and goal.
All three objects can be positioned in any of the 1024 loceidA propositional for-
mat of the state space describes each state as a feature wihtattributes for each



Algorithm 3: Modi ed version of the HSMQ algorithm: The update rule fam
primitive subtasks (line 13) differs from the original inephentation

1 Function HSMQ(state s,subtask p) returns oat;
2 Let Totalreward=0;
3 while (p is not terminatedjlo
4 Choose actiom = (S);
if ais primitivethen
Executea, observe one-step rewaR{s; a) and result state®:
else ifa is non-primitive subtasthen
R(s;a) ;= HSMQ(s; a) , which invokes subtask and returns the total reward

received whilea executed
9 Totalreward= Totalreward+ R(s;a);

10 if ais primitivethen

u Qpas) ! (1 )Qpas+ R(s;a+ maxQ(pa’s) ;
12 else ifa is non-primitive subtasthen |, i

13 Qpas)! (I )QEa+ R(s;a)+ R ;

14 end
15 return Totalreward

5
6
7
8

possible property of the environment, which amount&3bdifferent states. As such,
a tabular representation of the value functions is too léodee feasible. Additionally,
such encoding prevents any opportunity for generalizatiorthe learning algorithm,
e.g., when a policy is learned to move to a speci ¢ grid cék policy can not be reused
to move to another. A deictic state representation idestdbjects relative to the agent.
This reduces state space complexity and facilitates giregian. This is a rst step
towards a fully relational representation, such as the onered in Section 7. We will
discuss the state features used for this task in Section 6.2.

The proposed task is complex for several reasons. Firsstétte space without any
abstractions is enormous. Second, the game state is alsicethbg an enemy unit.
(The enemy executes a random move on each timestep unlegeabant is in sight,
in which case it moves toward the peasant.) Furthermordy paw task instance is
generated randomly (i.e., random goal and enemy patroMmafaso that the peasant
has to learn a policy that generalizes over unseen taskiresta

6.2 Solving the Reactive Navigation Task

We compare two different ways to solve the reactive navigetask, namely using at

RL and HRL. For aat representation of our task, the deictic state representation can
be de ned as the Cartesian-product of the following fouttdieas:Distance(enemy,s) ,
Distance(goal,s) , DirectionTo(enemy,s) , andDirectionTo (goal,s)

The functionDistance returns a number between 1 and 8 or a string indicating that
the objectis more than 8 steps away in s&atehile DirectionTo  returns the relative
direction to a given object in state Using 8 possible values for thBirectionTo
function, namely the eight compass directions, @pdssible values for thBistance



Fig. 16.This gure shows a screenshot of the reactive navigation task in thgWayame. In this
example, the peasant is situated at the bottom. Its task is to move to a gitiahp@dlse dark spot
right to the center) and avoid the enemy soldier (situated in the upper tafigahat is randomly
patrolling the map.



function, the total state space is drastically reduced f28frto only 5184 states. The
size of the action space & containing actions for moving in each of the eight com-
pass directions. The scalar reward sigRés; a) in the at representation should re ect
the relative success of achieving the two concurrent sisgoe., moving towards the
goal while avoiding the enemy). The environment returrd.@ reward whenever the
agent is located on a goal location. In contrast, a reward X is returned when the
agentis being red at by the enemy unit, which occurs wheretipent is in ring range
of the enemy (i.e., within 5 steps). Each primitive actionayls yields a reward of 1.
An immediate concern is that both sub-goals are often in atitign. We can certainly
consider situations where different actions are optimatte two sub-goals, although
the agent can only take one action at a time. An apparentigolid handle these two
concurrent sub-goals is applying a hierarchical represiemt, which we discuss next.

In the hierarchical representation, the original task is decomposed into two sim-
pler subtasks that solve a single sub-goal independerdly E&ggure 17). Théo goal
subtask is responsible for navigation to goal locations.state space includes the
Distance(goal,s) andDirectionTo(goal,s) features. Thérom enemygub-
task is responsible for evading the enemy unit. Its stateesipagludes th®istance(enemy,s)
andDirectionTo(enemy,s) features. The action spaces for both subtasks include
the primitive actions for moving in all compass directioiifie two subtasks are hi-
erarchically combined in a higher-levehvigatetask. The state space of this task is
represented by thmRange(goal,s) andinRange(enemy,s) features, and its
action space consists of the two subtasks that can be imaxskddhey were primitive
actionsInRange is a function that returngue if the distance to an object &or less
in states, andfalseotherwise. Because these new features can be de ned in &rms
existing features, we are not introducing any additionahdm knowledge compared
to the at representation. Thi® goalandfrom enemysubtasks terminate at each state
change on the root level, e.g., when the enemy (or goal)itrams from in range to
out of range and vice versa. We choose to set the pseudod®v@r both subtasks
to +100 whenever the agent completes a subtask@otherwise. Thenavigatetask
never terminates, but the primitive subtasks always teaiteiafter execution. The state

Fig. 17. Hierarchical decomposition of the reactive navigation task



spaces for the two subtasks are of stz and four fornavigate Therefore, the state
space complexity in the hierarchical representation is@pmately35times less than
with the at representation. Additionally, in the hieraichl setting we are able to split
the reward signal, one for each subtask, so they do not énterTheto goal subtask
rewards solely moving to the goal (i.e., only process 6 reward when reaching
a goal location). Similarly, thé&com enemysubtask only rewards evading the enemy.
Based on these two reward signals and the pseudo-rewaedsydtnavigatetask is
responsible for choosing the most appropriate subtaskekample, suppose that the
peasant at a certain time decided to move to the goal andkttt@agent7 steps to
reach it. The reward collected while tteegoalsubtask was active is7 (reward of 1
for all primitive actions) and-10 (for reaching the goal location) resulting i3 total
reward. Additionally, a pseudo-reward 100 is received becaus® goal success-
fully terminated, resulting in a total reward 6103 that is propagated to theavigate
subtask, that is used to update its Q-values. The Q-valuahddo goal subtask are
updated based on the immediate reward and estimated valhe sficcessor state (see
equation 8).

6.3 Experimental Results

We evaluated the performance of at RL and HRL in the reactiggigation task. The
step-size and discount-rate parameters were €eRtand0:7, respectively. These val-
ues were determined during initial experiments. We chosesémore exploration for
theto goalandfrom enemysubtasks compared t@vigate since more Q-values must
be learned. Therefore, we used Boltzmann action selectitthaarelatively high (but
decaying) temperature for the goal and from enemysubtasks and-greedy action
selection at the top level, withset to0:1 [39].

A “trial” (when Q-values are adapted) lasted f80 episodes. An episode termi-
nated when the adaptive agent was destroyed or until a xeé timit was reached.
During training, random instances of the task were genérate, random initial start-
ing locations for the units, random goals and random enertrgldzehavior. After each
trial, we empirically tested the current policy on a test@misisting of ve xed task
instances that were used throughout the entire experiffikase included xed starting
locations for all objects, xed goals and xed enemy patrehavior. We measured the
performance of the policy by counting the number of goaldeadd by the adaptive
agent (i.e., the number of times the agent successfulljhezhthe goal location before
it was destroyed or time ran out) by evaluating the greedicydiVe ended the exper-
iment after1500training episodes (50 trials). The experiment was repeatetimes
and the averaged results are shown in Figure 18.

From this gure we can conclude that while both methods impreith experience,
learning with the HRL representation outperforms learninth a at representation.
By using (more human-provided) abstractions, HRL repriesktine policy more com-
pactly than the at representation, resulting in fasterméay. Furthermore, HRL is
more suited to handling concurrent and competing subtasksaithe split reward sig-
nal. We expect that even after considerable learning wittiRla, HRL will still achieve
a higher overall performance. This experiment shows thangoals have clearly con-



Fig. 18.This gure shows the average performance of Q-learning over gréxgents in the reac-
tive navigation task for both at and HRL. The x-axis denotes the nunabémining trials and
the y-axis denotes the average number of goals achieved by the agtma fasks in the test set.

icting rewards and the overall task can be logically divitieto subtasks, HRL could
be successfully applied.

7 Relational Reinforcement Learning

Relational reinforcement learning [14] (RRL) combines Rle setting with relational
learning or inductive logic programming [26] (ILP) in ord&r represent states, ac-
tions, and policies using the structures and relationsdestify them. These structural
representations allow generalization over speci ¢ gostates, and actions. Because
relational reinforcement learning algorithms try to sopreblems at an abstract level,
the solutions will often carry to different instantiation$ that abstract problem. For
example, resulting policies learned by an RRL system ofemegalize over domains
with varying number of existing objects.

A typical example is the blocks world. A number of blocks wdiifferent properties
(size, color, etc.) are placed on each other or on the ods #ssumed that an in nite
number of blocks can be put on the oor and that all blocks aratly stacked onto
each other, e.g., a block can only be on one other block. Theilgle actions consist
of moving one clear block (e.g., a block with no other blocktop of it) onto another
clear block, or onto the oor. It is impossible to representls world states with a
propositional representation without an exponentialéase of the number of states.
Consider as an example the right-most state in Figure 19irét-®rder Logic (FOL),
this state can be represented, presuming this state isl sabig the conjunction

fon(s;c;floor) ~ clear(s;c) » on(s; d;floor) ” on(s;b;d ~ on(s;a;bh »
clear(s;a) * on(s;e;floor) ” clear(s; €)g.

sis reached by executing the move action (indicated by ttengrnoted asnove(r,s,a,h)
in the previous state (on the left in Figure 19).



77N

Q

a
b
d

b
c |d |e C

Fig. 19.The blocks world

One of the most important bene ts of the relational learrapgroach is that one can
generalize over states, actions, objects, but one is no¢dioio do so (one can abstract
away selectively only these things that are less import&ot)instance, suppose that all
blocks have a size property. One could then say that “thestsexsmall block which is
on a large block” 9B 1; B2 : block(B 1;small; _); block(B 2; large; _); on(B 1; B 2)).
ObjectsB1 and B2 are free variables, and can be instantiated by any blocken th
environment. RRL can generalize over blocks and learn jgglifor a variable number
of objects without necessarily suffering from the “cursalwhensionality” (where the
size of the value function increases exponentially withdineension of the state space).

Although it is a relatively new representation, severalrapphes to RRL have been
proposed during the last few years. One of the rst methodeldped within RRL was
relational Q-learning [14], described in Algorithm 4. Raaal Q-learning behaves
similarly to standard Q-learning, but is adapted to the R&iresentation. In relational
reinforcement learning, the representation containgtral or relational information
about the environment. Relational Q-learning employsatiaial regression algorithm
to generalize over the policy space. Learning examplesedias a tuples; s; Q(s; a)),
are processed by an incremental relational regressiomitigoto produce a relational
value-function or policy as a result. So far, a number ofedéht relational regression
learners have been developed.

In [28], we demonstrated how relational reinforcementr@ay and multi-agent
systems techniques could be combined to plan well in tasksate complex, multi-
state, and dynamic. We used a relational representatidreattate space in multi-agent
reinforcement learning, as this has many bene ts over tlopgsitional one. For in-
stance, it handled large state spaces, used a rich relatamuage, modeled other
agents without a computational explosion (generalizirgy @gents' policies), and gen-
eralized over newly derived knowledge. We investigategthsitive effects of relational
reinforcement learning applied to the problem of agent camnation in multi-agent
systems. More precisely, we investigated the learningoperdnce of RRL given some
communication constraints. Our results con rm that RRL t@nused to adequately
deal with large state spaces by generalizing over statégna@nd even agent policies.

1 A thorough discussion and comparison can be found in [13].



Algorithm 4 : The Relational Reinforcement Learning Algorithm

1 REQUIRE initialize Q(s; a) andsp arbitrarily;

2e O

3 repeatf for each episode

Examples ; ;

5 i 0;

6 repeatf for each stef2 episodg

7 takea for s using policy (s) and observe ands®;

IN

Qas)! (1 )Qas)+ r+ rr;ngQ(aO; 9 ;

Examples Examplef a;s;Q(s;a)g;

10 i i+l

11 until s is terminal ;

12 Update®. usingExamplesand a relational regression algorithm to proddke; ;
13 e e+1;

14 until done ;

© o

8 Transfer Learning

This section of the chapter chapter focuses on transfanilea(TL) and its relationship
to generalization and abstraction. The interested readeférred elsewhere [44] for a
more complete treatment of transfer in RL.

8.1 Transfer Learning Background

All transfer learning algorithms for reinforcement leargiagents use one or more
source task$o better learn in darget task relative to learning without the bene t of
the source task(s). Transfer techniques assume varyingetegf autonomy and make
many different assumptions. For instance, one way TL adlgms$ differ is in how they
allow source and target tasks to differ. Consider the pdiMDPs represented in Fig-
ure 20. The source and target tasks could differ in any podfahe MDP: the transition
function, T, the reward functionR, what states exist, what actions the agent can per-
form, and/or how the agent represents the world (the statpiesented here in terms

target task MDP).

The use of transfer in humans has been studied for many ye#ire psychological
literature [34, 47]. More related is sequential transfameen machine learning tasks
(c.f., [48]), which allows the learning of higher performgirtlassi ers with less data.
For instance, one could imagine using a large training coffam a newspaper to help
learn a classi er such that when the classi er is presentét waining examples from
a magazine, it can learn with fewer examples than if the napspdata had not been
used. Another common approach is that of learning to perfouttiple tasks simulta-
neously (c.f., [8]). The motivation in this case is that asslaer capable of performing
multiple tasks in a single domain will be forced to captureestructure of the domain,
performing better than if any one classi er was trained agxted in isolation.
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Fig. 20.Simple transfer schematic

8.2 Transfer as Generalization

Generalization may be thought of as the heart of machinaitegirgiven a set of data,
how should one perform on novel data? Such questions aralpreywn RL as well. For
instance, in a continuous action space, an agent is unl&elisit a single state more
than once and it must therefore constantly generalize égiqus data to predict how to
act.

Transfer learning may be thought of as a different type oegalization, where the
agent must generalize knowledgeross tasksThis section examines two strategies
common to transfer methods. The rst strategy is to learnestow-level information
in the source task and then use this information to bettarlb&rning in the target task.
The second strategy is to learn something that is true fogeheral domain, regardless
of the particular task in question.

Example Domain: Keepaway One popular domain for demonstrating TL in RL tasks
is that ofKeepaway37], a sub-task of the full 11 vs. 11 simulated soccer, whisbs the
RoboCup Soccer Server [27] to simulate sensor and actuatee of physical robots.
Typically, n teammates (thkeeper¥ attempt to keep control of the ball within a small
eld area, whilen 1 teammates (théakerg attempt to capture the ball or kick it
out of bounds. The keepers typically learn while the takeliedv a xed policy. Only
the keeper with the ball may select actions intelligentlykaepers without the ball
always executes getopen action, where they attempt to move to an area of the eld
to receive a pass.

Keepers learn to extend the average length of an episodeimesby selecting be-
tween executing thieold ball action (attempting to maintain possession), or they ma
pass to ateammate. In 3 vs. 2 Keepaway, there are three keepetwardkers, and
thus the keeper with the ball has 3 mé&caations (hold, pass to closest teammate, and

2 Note that because the actions may last more than one timestep, Keepaeelynisally an
SMDP, rather than an MDP, but such distinction is not critical for the pgepof this chapter.



Fig.21.3 vs. 2 Keepaway uses multiple distances and angles to represent statesrated in
Table 1.

pass to second closest teammate). The keeper with the pedsents its state with 13
(rotational invariant) state variables, shown in Figureiis is also a deictic represen-
tation, similar to the one discussed in Section 6.1, becplagers are labeled relative to
their distance to the ball, rather than labeled by jerseytramtor another xed scheme).

The 4 vs. 3 Keepaway task, which adds an additional keepetakad, is more
dif cult to learn. First, there are more actions (the keep#h the ball selects from 4
actions) and keepers have a more complex state represer(gtie to the extra players,
the world is described by 19 state variables). Second, Isectnere are more players
on the eld, passes must be more frequent. Each pass has eecbBibeing missed by
the intended receiver, and thus each pass brings additiskdhat the ball will be lost,
ending the episode.

Given these two tasks, there are (at least) two possibles oatransfer. First, one
may assume that a set of keepers have trained on the soukceCtassidering this
source task training a sunk cost, the goal is to learn betstet on the target task by
using the source task information, compared to learningdtget task while ignoring
knowledge from the source task. A second, more dif cult,Igedo explicitly account
for source task training time. In other words, the second gb#&ransfer is to learn
the source task, transfer some knowledge, and then tasjebédter/faster than if the
agents had directly trained only on the target task.

Transferring Low-Level Information: Ignoring novel struc ture When considering
transfer from 3 vs. 2 to 4 vs. 3, one approach would be to lea@ivalue function
in the source task and then copy it over into the target tagigring the novel state



Description 3 vs.

2 and 4 vs. 3 State Variables

[3 vs. 2 state variable

|4 vs. 3 state variable

dist(K1;C) dist(K1;C)
diSt(Kl;Kz) diSt(Kl;KZ)
dist(K 1;K3) dist(K1;K3)
dist (K 1, K 4)
diSt(Kl;Tl) diSt(K 1;T1)
dist (K 1; T2) dist(K 1; T2)
dist (K 1;T3)
dist(K2;C) dist(K 2; C)
dist(K3;C) dist(K3;C)
dist (K 4;C)
dist (T1;C) dist(T1;C)
dist(T2; C) dist(T2; C)
dist (T3;C)

Min(dist (K 2; T1), dist (K 2; T2))
Min(dist (K 3; T1), dist (K 3; T2))

Min(dist (K 2; T1), dist (K 2; T2), dist (K 2;T 3))

Min(dist (K 3; T1), dist (K 3; T2), dist (K 3;T3))

Min(dist (K 4;T 1), dist (K4;T2),dist (K4;T3))

Min(ang(K 2; K 1;T1),ang(K2; K 1;T2),
ang(K2;K1;T3)

Min(ang(K3;K1;T1), ang(Ks; K1;T2),
ang(Ks3;K1;T3))

Min(ang (K 4;K1;T1),ang(K4;K1;T2),
ang(K4;K1;T3))

Table 1. This table lists the 13 state variables for 3 vs. 2 Keepaway and the 19 stateesifor

4 vs. 3 Keepaway. The distance between a and b is denotdidtds; b); the angle made by a,
b, and c, where b is the vertex, is denotedang(a; b; 0; and values not present in 3 vs. 2 are
in bold. Relevant points are the center of the &€q keeperK 1-K 4, and takersl;1-Ts, where
players are ordered by increasing distance from the ball.

Min(ang(K 2;K 1; T1), ang(K 2; K 1; T2))

Min(ang(K 3;K1; T1), ang(K 3; K 1; T2))

variables and actions. This is similar to the idea of doméaiinly, discussed earlier in
Section 4.2. For instance, theld action in 4 vs. 3 can be considered the same as the
hold action in 3 vs. 2. Likewise, the 4 vs. 3 actiopass to closest teammate and
pass to second closest teammate may be considered the same aggh@ actions
pass to closest teammate apaiss to second closest teammate. The “novel” 4 vs. 3
action,pass to third closest teammate, is ignored. Table 1 shows the staiables
from the 3 vs. 2 and 4 vs. 3 tasks, where the novel state vagablthe 4 vs. 3 task are

in bold.

This is precisely the approach usedQrvalue Reus@45]. Results (reproduced in
Table 2) show that the Q-values saved after training in the. 2\ask can be success-
fully used directly in the 4 vs. 3 task by ignoring the noveltstvariables and actions.
Speci cally, the source task action-value function is uasdan initial bias in the target
task, which is then re ned over time with SARSA learning (e@-values for the novel
4 vs. 3 action are learned, and existing Q-values are re.nédjumn 2 of the table
shows that the source task knowledge can be successfuligaeand column 3 shows
that the total training can be successfully reduced viasfean



Lazaric et al. [23] also focuses on transferring very lowelénformation by using
source tasknstancedn a target task. After learning one or more source tasksesom
experience is gathered in the target task, which may havdferatdit state space or
transition function, but the state variables and actionstmemain unchanged. Saved
instances (that is, observés:; a;r;s% tuples) are compared to recorded instances in
the target task. Source task instances that are very simfigudged by their distance
and alignment with target task data, are transferred. Ahblatarning algorithm Kit-
ted Q-iteration[15], which uses instance-based function approximatioen uses both
source instances and target instances to achieve a higakereward (relative to learn-
ing without transfer).

Region transferintroduced in the same chapter [23], calculates the siityilae-
tween the target task and different source tasks per sanapesr than per task. Thus,
if source tasks have different regions of the state spacehndie more similar to the
target, only those most similar regions can be transfetretthis way, different regions
of the target task may reuse data from different source tasidregions of the target
task that are completely novel will use no source task dalidoAgh this work did
not use Keepaway, one possible example would be to haveestagks with different
coef cients of friction: in the target task, grass condit®in different sections of the
eld would dictate which source tasks(s) are most similad avhere data should be
transferred from.

Transferring Low-Level Information: Mapping novel structu re Inter-task map-
pings[45] allow a TL algorithm to explicitly state the relatioriptbetween different
state variables and actions in the two tasks. For instaheedvel 4 vs. 3 actiorpass

to third closest teammate, may be mapped to the 3 vs. 2 gudiss to second closest
teammate. When such an inter-task mapping is provided (acatisct), transfer may
be even more effective than if the novelty is ignored. Suchproach generalizes the
source task knowledge to the target task. By generalizieg different target task state
variables and actions, the TL method can initialize all ¢atgisk Q-values to values
learned in the source task, biasing learning and resultisggni cantly faster learning.
The Value Function Transfer method in Table 2 uses intde+t@ppings (columns four
and ve), and outperforms Q-value Reuse, which had ignomathstate variables and
actions.

While inter-task mappings are a convenient way to fully siyelationships be-
tween MDPs, it is possible that not enough information isvimdo design a full map-
ping. For instance, an agent may know that a pair of statabi®s describe “distance
to teammate” and “distance from teammate to marker,” butitfent is not toldvhich
teammate the state variables describ@momorphism§31] are a different abstraction
that can de ne transformations between MDPs based on trangind reward dynam-
ics, similar in spirit to inter-task mappings, and have based successfully for trans-
fer [35]. However, discovering homomorphisms is NP-har#l][3Vork by Soni and
Singh [35] supply an agent with a series of possible statestoamations (i.e., potential
homomorphisms) and an inter-task mapping for all actiome ttansformationX , ex-
ists for every possible mapping between target task staitabkas to source task state
variables. The agent learns in the source task as normah thieeagent must learn the



Transfer Results between 3 vs. 2 and 4 vs. 3 Keepaway

Q-value Reuse Value Function Transfer
#0f3vs.2 Avg.4vs.3 Avg. Total Avg. 4 vs. 3 Avg. Total
Episodes|Time (sim. hourJ)Time (sim. hours) Time (sim. hourJ)Time (sim. hours)

0 30.84 30.84 30.84 30.84
10 28.18 28.21 24.99 25.02
50 28.0 28.13 19.51 19.63
100 26.8 27.06 17.71 17.96
250 24.02 24.69 16.98 17.65
500 22.94 24.39 17.74 19.18
1,000 22.21 24.05 16.95 19.70
3,000 17.82 27.39 9.12 18.79

Table 2. Results in columns two and three (reproduced from [45]) show lear®ing. 2 for
different numbers of episodes and then using the learned 3 vs. 2 GiitACtly while learning
4 vs. 3. Minimum learning times for reaching a preset 4 vs. 3 perfocmémreshold are bold.
All times reported are “simulator hours,” the number of playing hoursukited, as opposed
to wall-clock time. The top row of results shows the time required to learn in the 3 task
without transfer. As source task training time increases, the requirgdttersk training time
decreases. The total training time is minimized with a moderate amount festask training.
The results of using Value Function Transfer (with inter-task mappings¥laown in columns
four and ve. Q-value Reuse provides a statistically signi cant benelgtive to no transfer, and
Value Function Transfer yields an even higher improvement.

correct transformation: in each target task sttihe agent must choose to randomly
explore the target task actions, or choose to take the astiggested by the learned
source task policy using one of the existing transformati®n Q-learning allows the
agent to select the best state variable mapping, de ned @l which allows the
player to accrue the most reward, as well as learn the agtbres for the target task.
Later work by Sorg and Singh [36], extend this idea to thaeafhing “soft” homomor-
phisms. Rather than a strict surjection, these mappinggrapsobabilities that a state
in a source task is the same as a state in the target task.ddwgd aexibility allows the
authors to provide bounds on their algorithm's performaiasewell as show that such
mappings are indeed learnable.

The MASTER algorithm [42] transfers instances similar to Lazaric [23{cept that
novel state variables and actions may be explicitly aceamlifior by using inter-task
mappingsMASTER uses an exhaustive search to generate all possible istertap-
pings, and then selects the one that best describes thiemsldp between the source
and target task, learning the best inter-task mapping. ,Tti@a from the source task
is mapped to the target task, and learning can continue teeréhe source task data.
Although this method currently does not scale to Keepawae (i its reliance on
model-learning methods [19] for continuous state varigllbut is similar in spirit to
the above two methods.

Transferring High-Level Information This section discusses four methods which
transfer higher-level information than the previouslycdissed transfer methods. One



example is aroption, where a set of actions are composed into a single high-level
macro-action that the agent may choose to execute. Thusd$aarchers have not quan-

ti ed “high-level” and “low-level” information well, nor fave they made convincing
arguments to support the claim that high-level informatgolikely to generalize to dif-
ferent tasks within a similar domain. However, this claimkesintuitive sense and is
an interesting open question.

Section 7 introduced Relational RL (RRL). Recall that thegmsitional representa-
tion allows state to be discussed in terms of objects and pineperties. Actions in the
RRL framework typically have pre- and post-conditions owbjects. When the state
changes such that there are more or fewer objects, learnedu@s for actions may
be very similar, as the object on which the action acts haciahged. One example
of such transfer is by Croonenbourghs et al. [10], where traylearn a source task
policy with RRL. This source task policy then generatesestattion pairs, which are
in turn used to build a relational decision tree. This treedfts which action would
be executed by the policy in a given state. As a nal step, theg produceelational
options These options are directly used in the target task with siseraption that the
tasks are similar enough that no translation of the relatioptions is necessary.

Konidaris and Barto [22] also consider transferring opgidout do so in a different
framework. Instead of an RRL approach, they divide probléms agent-spaceand
problem-spaceepresentations [21]. Agent-space de nes an agent's dhied that
remains xed across all problems (e.qg., it represents att®pbysical sensors and ac-
tuators); agent-space may be considered a type of domamghitihe problem-space
may change between tasks (e.g., there may be different roargurations in a navi-
gation task). By assuming “pre-speci ed salient eventa¢hsas when a light turns on
or an agent unlocks a door, agents may learn options to aliiese events. Options
succeed in improving learning in a single task by making sieafor agents to reach
such salient events (which are assumed to be relevant ftagskdeing performed). Ad-
ditionally, the agent may train on a series of tasks, legroiptions in both agent- and
problem-space, and reusing them in subsequent tasks. Tmersuguggest that agent-
space options will likely be more portable than problemegpaptions, and it is likely
that problem-space options will only be useful when the spand target tasks are very
similar.

Torrey et al. [49] also consider transferring option-likeokledge. Their method
involves learning astrategy represented as a nite-state machine, which can be ap-
plied to a target task with different state variables antast Strategies are learned in
the source task and then remapped to the target task withtagie mappings. These
transferred strategies are then demonstrated to the t@gjelearner. Instead of ex-
ploring randomly, the agent is forced to execute any appléatrategy for the rst
100 episodes, learning to estimate the value of executifeyelnt strategies. After this
demonstration phase, agents may then select from all of th&'8/actions. Experi-
ments show that learning rst on 2-on-1 BreakAway (similar2vs. 1 Keepaway, but
where the “keepers” are trying to score a goal on the “tajemsiproves learning in
both 3-on-2 Breakaway and 4-on-3 BreakAway.



8.3 Abstraction in Transfer

The majority of the TL methods in the above section focuseitherrst goal of transfer:
showing that source task knowledge can improve target tsking, when the source
task is treated as a sunk cost. (An exception is Taylor e45], {vhere they demonstrate
that learning a pair or sequence of tasks can be faster thectlglilearning the target
task.) In this section, we discuss abstraction in the carmdekansfer. Speci cally, if
the source task is an abstract version of the target taskaytle substantially faster
to learn than the target task, but still provide the targsk tearner with a signi cant
advantage.

Taylor and Stone [43] introduced the notioniofer-domaintransfer in the context
of Rule Transfer(similar in spirit to Torrey et al.'s method [49]). The chapshowed
two instances where transfer between very different dosnaizs successful. In both
cases, the source tasks are discrete and fully observatl@ree is deterministic. The
target task was 3 vs. 2 Keepaway, which has continuous statables, is partially
observable, and is stochastic (due to sensor and actuase) no

One of the source tasks is shown in Figure 22. In this taskpldneer begins at one
end of the 25 25 board and the opponent begins at the opposite end of tine. dee
goal of the player is to reach the opposite end of the boardowitbeing touched by
the opponent (either condition will end the episode). Ttayel's state is represented
by three state variables and it has three actions avail&hke player may move North
(forward) or perform a knight's jump: North + East + East, cortth + West + West.
Although this task is very different from Keepaway, there some important similar-
ities. For instance, when the distance between the keeplerthd ball and the closest
taker is small, the player is likely to lose the ball (and tend the episode). In Knight's
Joust, when the distance between the player and the oppisr&anall, the episode is
also likely to end.

Most signi cant with respect to transfer is the fact that ayeat sees an average
of only 600 distinct states over a 50,000 episode learniiafydf Knight's Joust. This
makes learning a good source task policy relatively eagsynlag in the Knight's Joust
abstraction takes on the order of a minute, whereas leamiBgys. 2 Keepaway takes
hours of wall clock time. Using an abstract source task thatva very fast learning
makes the task of reducing the total training time must eagithe goal is to learn 3
vs. 2 Keepaway, it makes sense to spend a minute or two lgaamrabstract source
task because it can save hours of learning in the targettelskiye to directly learning
3 vs. 2 Keepaway).

While this result is encouraging, it can be regarded as a mbabncept: both
source tasks used by Taylor and Stone [43] were carefulligded to be useful for
transfer into the Keepaway task. The idea of constructingeaeces of tasks which are
fast to learn is very appealing [4, 41], but there are culyemb concrete guidelines.
This is due, in part, to the absence of a general method fodidgovhen transfer from
a given source task will help learn a target task.

For instance, consider an agent that rst learns the gam&afdaway,” where the
goal is to loose the ball as fast as possible. If the agent titagisfers this knowledge
to Keepaway, it will perform worse than if it had ignored it®pious knowledge [45].
While this may appear “obvious” to a human, such differencay bve opaque to an
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Fig. 22.Knight's Joust: The player attempts to reach the goal end of a a25grid-world while
the opponent attempts to touch the player.

agent and its learning algorithm. In the above example, doece task and target task
differ only in reward function: the transition model, stataiables, actions, etc. are all
identical. Similarly, if an agent learns a speci ¢ path ofiaonaze in a source task and
then uses this policy to navigate a target task maze, a masiadesigner of the target
task may make the source task policy perform arbitrarilyryo®rotecting against such
negative transfer is an important open question.

9 Conclusions

In this survey we investigated generalization and abstnadh Reinforcement Learn-
ing. We provided the fundamentals of RL, introduced deaniis of generalization and
abstraction, and elaborated on the most common techniguashtieve both. These
techniques include function approximation, hierarchieghforcement learning, rela-
tional reinforcement learning and transfer learning. Witivel and existing examples
from the literature, we illustrated these techniques aogiiged many references to the
literature. Our hope is that this chapter has provided a sotroduction and structure
to the concepts of abstraction and generalization in RLoeraging additional work in
this exciting eld.
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