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Abstract

This work introducesHuman-Agent Transfer(HAT), an algo-
rithm that combines transfer learning, learning from demon-
stration and reinforcement learning to achieve rapid learning
and high performance in complex domains. Using experi-
ments in a simulated robot soccer domain, we show that hu-
man demonstrations transferred into a baseline policy for an
agent and refined using reinforcement learning significantly
improve both learning time and policy performance. Our
evaluation compares three algorithmic approaches to incor-
porating demonstration rule summaries into transfer learning,
and studies the impact of demonstration quality and quantity.
Our results show that all three transfer methods lead to statis-
tically significant improvement in performance over learning
without demonstration.

Introduction
Agent technologies for virtual agents and physical robots are
rapidly expanding in industrial and research fields, enabling
greater automation, increased levels of efficiency, and new
applications. However, existing systems are designed to pro-
vide niche solutions to very specific problems and each sys-
tem may require significant effort. The ability to acquire
new behaviors through learning is fundamentally important
for the development of general-purpose agent platforms that
can be used for a variety of tasks.

Existing approaches to agent learning generally fall into
two categories: independent learning through exploration
and learning from labeled training data. Agents often learn
independently from exploration viaReinforcement learning
(RL) (Sutton and Barto 1998). While such techniques have
had great success in offline learning and software applica-
tions, the large amount of data and high exploration times
they require make them intractable for real-world domains.

On the other end of the spectrum arelearning from
demonstration(LfD) algorithms (Argall et al. 2009). These
approaches leverage the vast experience and task knowledge
of a person to enable fast learning, which is critical in real-
world applications. However, human teachers provide par-
ticularly noisy and suboptimal data due to differences in em-
bodiment (e.g., degrees of freedom, action speed) and lim-
itations of human ability. As a result, final policy perfor-
mance achieved by these methods is limited by the quality
of the dataset and the performance of the teacher.

This paper proposes a novel approach: use RLtransfer
learningmethods (Taylor and Stone 2009) to combine LfD
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and RL and achieve both fast learning and high performance
in complex domains. In transfer learning, knowledge from
a source taskis used in atarget taskto speed up learn-
ing. Equivalently, knowledge from a source agent is used
to speed up learning in a target agent. For instance, knowl-
edge has been successfully transferred between agents that
balance different length poles (Selfridge, Sutton, and Barto
1985), that solve a series of mazes (Fernández and Veloso
2006), or that play different soccer tasks (Taylor, Stone, and
Liu 2007; Torrey et al. 2005). The key insight of trans-
fer learning is that previous knowledge can be effectively
reused, even if the source task and target task are not iden-
tical. This results in substantially improved learning times
because the agent no longer relies on an uninformed prior.

In this work, we show that we can effectively transfer
knowledge from a human to an agent, even when they have
different perceptions of state. Our method,Human-Agent
Transfer(HAT): 1) allows a human teacher to perform a se-
ries of demonstrations in a task, 2) uses an existing transfer
learning algorithm,Rule Transfer(Taylor and Stone 2007),
to learn rule-based summaries of the demonstration, and
3) integrates the rule summaries into RL, biasing learning
while allowing improvement over the transferred policy.

We perform empirical evaluation ofHAT in a simulated
robot soccer domain. We compare three algorithms for in-
corporating rule summaries into reinforcement learning, and
compare learning performance for multiple demonstration
source, quantity, and quality conditions. Our findings show
statistically significant improvement in performance for all
variants ofHAT over learning with no prior.

Background
This section provides background on the three key tech-
niques discussed in this paper: reinforcement learning,
learning from demonstrations, and transfer learning.

Reinforcement Learning

Reinforcement learning is a common approach to agent
learning from experience. We define reinforcement learn-
ing using the standard notation of Markov decision pro-
cesses (MDPs). At every time step the agent observes its
state s ∈ S as a vector ofk state variables such that
s = 〈x1, x2, . . . , xk〉. The agent selects an action from the
set of available actionsA at every time step. An MDP’s
reward functionR : S × A 7→ R and (stochastic) transi-
tion functionT : S × A 7→ S fully describe the system’s



dynamics. The agent will attempt to maximize the long-
term reward determined by the (initially unknown) reward
and transition functions.

A learner chooses which action to take in a state via a
policy,π : S 7→ A. π is modified by the learner over time to
improve performance, which is defined as the expected total
reward. Instead of learningπ directly, many RL algorithms
instead approximate the action-value function,Q : S×A 7→
R, which maps state-action pairs to the expected real-valued
return. In this paper, agents learn using Sarsa (Rummery and
Niranjan 1994; Singh and Sutton 1996), a well known but
relatively simple temporal difference RL algorithm, which
learns to estimateQ(s, a). While some RL algorithms are
more sample efficient than Sarsa, this paper will focus on
Sarsa for the sake of clarity.

Learning from Demonstration
Learning from demonstrationresearch explores techniques
for learning a policy from examples, or demonstrations, pro-
vided by a human teacher. LfD can be seen as a subset of
Supervised Learning, in that the agent is presented with la-
beled training data and learns an approximation to the func-
tion which produced the data.

Similar to reinforcement learning, learning from demon-
stration can be defined in terms of the agent’s observed state
s ∈ S and executable actionsa ∈ A. Demonstrations
are recorded as temporal sequences oft state-action pairs
{(s0, a0), ..., (st, at)}, and these sequences typically only
cover a small subset of all possible states in a domain. The
agent’s goal is to generalize from the demonstrations and
learn a policyπ : S 7→ A covering all states that imitates the
demonstrated behavior.

Many different algorithms for using demonstration data
to learnπ have been proposed. Approaches vary by how
demonstrations are performed (e.g., teleoperation, teacher
following, kinesthetic teaching, external observation),the
type of policy learning method used (e.g., regression, classi-
fication, planning), and assumptions about degree of demon-
stration noise and teacher interactivity (Argall et al. 2009).
Across these differences, LfD techniques possess a number
of key strengths. Most significantly, demonstration lever-
ages the vast task knowledge of the human teacher to sig-
nificantly speed up learning either by eliminating explo-
ration entirely (Grollman and Jenkins 2007; Nicolescu et al.
2008), or by focusing learning on the most relevant areas
of the state space (Smart and Kaelbling 2002). Demonstra-
tion also provides an intuitive programming interface for hu-
mans, opening possibilities for policy development to non-
agents-experts.

However, LfD algorithms are inherently limited by the
quality of the information provided by the human teacher.
Algorithms typically assume the dataset to contain high
quality demonstrations performed by an expert. In real-
ity, teacher demonstrations may be ambiguous, unsuccess-
ful, or suboptimal in certain areas of the state space. A
näıvely learned policy will likely perform poorly in such ar-
eas (Atkeson and Schaal 1997). To enable the agent to im-
prove beyond the performance of the teacher, learning from
demonstration must be combined with learning from expe-

rience. Most similar to our approach is the work of Smart
and Kaelbling, which shows that human demonstration can
be used to bootstrap reinforcement learning in domains with
sparse rewards by initializing the action-value function using
the observed states, actions and rewards (Smart and Kael-
bling 2002). In contrast to this approach, our work uses
demonstration data to learn generalized rules, which are then
used to bias the reinforcement learning process.

Transfer Learning
The insight behindtransfer learning(TL) is that generaliza-
tion may occur not only within tasks, but alsoacross tasks,
allowing an agent to begin learning with an informative prior
instead of relying on random exploration.

Transfer learning methods for reinforcement learning can
transfer a variety of information between agents. However,
many transfer methods restrict what type of learning algo-
rithm is used by both agents (for instance, some methods
require temporal difference learning (Taylor, Stone, and Liu
2007) or a particular function approximator (Torrey et al.
2005) to be used in both agents). However, when transfer-
ring from a human, it is impossible to copy a human’s “value
function” — both because the human would likely be inca-
pable of providing a complete and consistent value function,
and because the human would quickly grow wary of evalu-
ating a large number of state-action pairs.

This paper usesRule Transfer(Taylor and Stone 2007),
a particularly appropriate transfer method that is agnostic to
the knowledge representation of the source learner. The abil-
ity to transfer knowledge between agents that have different
state representations and/or actions is a critical abilitywhen
considering transfer of knowledge between a human and an
agent. The following steps summarize Rule Transfer:

1a: Learn a policy (π : S 7→ A) in the source task.

1b: Generate samples from the learned policy. Record a
number of(S,A) pairs while following the learned policy.

2: Learn a decision list (Ds : S 7→ A) that summarizes
the source policy.1

3: Use Dt to bootstrap learning of an improved policy in
the target task.

Additional Related Work
We now briefly summarizes three additional related topics.

The recent work by Knox and Stone (Knox and Stone
2010) combines behavioral shaping with reinforcement
learning. TheirTAMER (Knox and Stone 2009) system
learns to predict and maximize a reward that is interactively
provided by a human. The learned human reward is com-
bined in various ways with Sarsa(λ), providing significant
improvements. The primary difference betweenHAT and
this method is that we focus on leveraging human demon-
stration, rather than estimating and integrating a human re-
inforcement signal.

1Additionally, if the agents in the source and target task use
different state representations or have different available actions,
the decision list can be translated via inter-task mappings (Taylor
and Stone 2007; Taylor, Stone, and Liu 2007).



The idea of transfer between a human and an agent is
somewhat similar toimplicit imitation (Price and Boutilier
2003), in that one agent teaches another how to act in a task,
butHAT does not require the agents to have the same (or very
similar) representations.

High-level adviceand suggestions have also been used to
bias agent learning. Such advice can provide a powerful
learning tool that speeds up learning by biasing the behav-
ior of an agent and reducing the policy search space. How-
ever, existing methods typically require either a significant
user sophistication (e.g., the human must use a specific pro-
gramming language to provide advice (Maclin and Shavlik
1996)) or significant effort is needed to design a human in-
terface (e.g., the learning agent must have natural language
processing abilities (Kuhlmann et al. 2004)). Allowing a
teacher to demonstrate behaviors is preferable in domains
where demonstrating a policy is a more natural interaction
than providing such high-level advice.

Methodology
In this section we presentHAT, our approach to combining
LfD and RL.HAT consists of three steps, motivated by those
used in Rule Transfer:
Demonstration The agent performs the task under the tele-

operated control by a human teacher, or by executing
an existing suboptimal controller. During execution, the
agent records all state-action transitions. Multiple task
executions may be performed.

Policy Summarization HAT uses the state-action transition
data recorded during the Demonstration phase to derive
rules summarizing the policy. These rules are used to
bootstrap autonomous learning.

Independent Learning The agent learns independently in
the task via reinforcement learning, using the policy sum-
mary to bias its learning. In this step, the agent must bal-
ance exploiting the transferred rules with attempting to
learn a policy that outperforms the transferred rules.
In contrast to transfer learning,HAT assumes that either

1) the demonstrations are executed on the same agent, in
the same task, as will be learned in the Independent Learn-
ing phase, or that 2) any differences between the agent or
task in the demonstration phase are small enough that they
can be ignored in the independent learning phase. Instead of
transferring between different tasks,HAT focuses on trans-
ferring between different agents with different internal rep-
resentations. For instance, it is not possible to directly use a
human’s “value function” inside an agent because 1) the hu-
man’s knowledge is not directly accessible and 2) the human
has a different state abstraction than the agent.

We next present three different ways thatHAT can use a
decision list to improve independent learning.

Value Bonus
The intuition behind theValue Bonusmethod (Taylor and
Stone 2007) is similar to that of shaping in that the summa-
rized policy is used to add a reward bonus to certain human-
favored actions. When the agent reaches a state and cal-
culatesQ(s, a), the Q-value of the action suggested by the

summarized policy is given a constant bonus (B). For the
first C episodes, the learner is forced to execute the action
suggested by the rule set. This is effectively changing the
initialization of the Q-value function, or (equivalently)pro-
viding a shaping reward to the state-action pairs that are se-
lected by the rules.

We useB = 10 andC = 100 to be consistent with past
work (Taylor and Stone 2007); the Q-value for the action
chosen by the summarized policy will be given a bonus of
+10 and agents must execute the action chosen by the sum-
marized policy for the first 100 episodes.

Extra Action
TheExtra Actionmethod (Taylor and Stone 2007) augments
the agent so that it can select apseudo-action. When the
agent selects this pseudo-action, it executes the action sug-
gested by the decision list. The agent may either execute the
action suggested by the transferred rules, or it can execute
one of the “base” MDP actions. Through exploration, the
RL agent can decide when it should follow the transferred
rules or when it should execute a different action (e.g., the
transferred rules are sub-optimal). Were the agent to always
execute the pseudo-action, the agent would never learn but
would simply mimic the demonstrated policy.

As with the Value Bonus algorithm, the agent initially ex-
ecutes the action suggested by the decision list, allowing it
to estimate the value of the decision list policy. We again set
this period to be 100 episodes (C = 100).

Probabilistic Policy Reuse
The third method used isProbabilistic Policy Reuse(PPR),
based on theπ-reuse Exploration Strategy (Fernández,
Garćıa, and Veloso 2010; Fernández and Veloso 2006). In
PPR, the agent will reuse a policy with probabilityψ, ex-
plore with probabilityǫ, and exploit the current policy with
probability1 − ψ − ǫ. By decayingψ over time, the agent
can initially leverage the decision list, but then learn to im-
prove on it if possible. PPR is similar to the more recent
TAMER+RL method #7 (Knox and Stone 2010): the agent
tries to execute the action suggested by the learned human
shaping reward, rather than follow a transferred policy.

Experimental Validation
This section first discusses Keepaway (Stone, Sutton, and
Kuhlmann 2005), a simulated robot soccer domain, and then
explains the experimental methodology used for evaluation.

Keepaway
Keepawayis a domain with a continuous state space and sig-
nificant amounts of noise in the agent’s actions and sensors.
One team, thekeepers, attempts to maintain possession of
the ball within a 20m× 20m region while another team, the
takers, attempts to steal the ball or force it out of bounds.
The simulator places the players at their initial positionsat
the start of each episode and ends an episode when the ball
leaves the play region or is taken away from the keepers.

The keeper with the ball has the option to either pass the
ball to one of its two teammates or to hold the ball. In3 vs.



2 Keepaway(3 keepers and 2 takers), the state is defined by
13 hand-selected state variables, as defined in (Stone, Sut-
ton, and Kuhlmann 2005). The reward to the learning algo-
rithm is the number of time steps the ball remains in play
after an action is taken. The keepers learn in a constrained
policy space: they have the freedom to decide which action
to take only when in possession of the ball. Keepers not in
possession of the ball are required to execute theReceive
macro-action in which the player who can reach the ball the
fastest goes to the ball and the remaining players follow a
handcoded strategy to try to get open for a pass.

For policy learning, the Keepaway problem is mapped
onto the discrete-time, episodic RL framework. As a way
of incorporating domain knowledge, the learners choose
not from the simulator’s primitive actions but from a set
of higher-level macro-actions implemented as part of the
player (Stone, Sutton, and Kuhlmann 2005). These macro-
actions can last more than one time step and the keepers
have opportunities to make decisions only when an on-going
macro-action terminates. Keepers can choose toHold
(maintain possession),Pass1 (pass to the closest team-
mate), andPass2 (pass to the further teammate). Agents
then make decisions at discrete time steps (when macro-
actions are initiated and terminated).

To learn Keepaway with Sarsa, each keeper is controlled
by a separate agent. Many kinds of function approximation
have been successfully used to approximate an action-value
function in Keepaway, but a Gaussian Radial Basis Func-
tion Approximation (RBF) has been one of the most suc-
cessful (Stone et al. 2006). All weights in the RBF func-
tion approximator are initially set to zero; every initial state-
action value is zero and the action-value function is uniform.
Experiments in this paper use the public versions 11.1.0 of
the RoboCup Soccer Server (Noda et al. 1998), and 0.6 of
UT-Austin’s Keepaway players (Stone et al. 2006).

Experimental Setup
In the Demonstration phase ofHAT, Keepaway players in the
simulator are controlled by the teacher using the keyboard.
This allows a human to watch the visualization and instruct
the keeper with the ball to execute theHold, Pass1, or
Pass2 actions. During demonstration, we record all (s, a)
pairs selected by the teacher. It is worth noting that the hu-
man has a very different representation of the state than the
learning agent. Rather than observing a 13 dimensional state
vector, the human uses a visualizer of the soccer field. It is
therefore critical that whatever method used to glean infor-
mation about the human’s policy does not require the agent
and the human to have identical representations of state.

To be consistent with past work (Stone et al. 2006), our
Sarsa learners useα = 0.05, ǫ = 0.10, and RBF function
approximation. After conducting initial experiments with
five values ofψ, we found thatψ = 0.999 was at least as
good as other possible settings. In the Policy Summarization
Phase, we use a simple propositional rule learner to generate
a decision list summarizing the policy (that is, it learns to
generalize which action is selected in every state). For these
experiments, we use JRip, as implemented in Weka (Witten
and Frank 2005).

Finally, when measuring speedup in RL tasks, there are
many possible metrics. In this paper, we measure the suc-
cess ofHAT along three related dimensions. The initial per-
formance of an agent in a target task may be improved by
transfer. Such ajumpstart(relative to the initial performance
of an agent learning without the benefit of any prior informa-
tion), suggests that transferred information is immediately
useful to the agent. In Keepaway, the jumpstart is measured
as the average episode reward (corresponding to the average
episode length in seconds), averaged over 1,000 episodes
without learning. The jumpstart is a particularly important
metric when learning is slow and/or expensive.

Thefinal rewardacquired by the algorithm at the end of
the learning process (at 30 simulator hours in this paper) in-
dicates the best performance achieved by the learner. This
value is computed by taking the average of the final 1,000
episodes to account for noise in the Keepaway domain.

The total rewardaccumulated by an agent (i.e., the area
under the learning curve) may also be improved. This metric
measures the ability of the agent to continue to learn after
transfer, but is heavily dependent on the length of the ex-
periment. In Keepaway, the total reward is the sum of the
average episode durations at every integral hour of training:

∑

t:0→n

(average episode reward at training hourt)

where the experiment lastsn hours and each average reward
is computed by using a sliding window over the past 1,000
episodes.2

Empirical Evaluation
This section presents results showing thatHAT can effec-
tively use human demonstration to bootstrap RL in Keep-
away agents.

To begin, we recorded a demonstration fromSubject A
which lasted for 20 episodes (less than 3 minutes). Next,
we used JRip to summarize the policy with a decision list.
The following rules were learned, wherestatek represents
thekth state variable, as defined in the keepaway task:

if (state11 ≥ 74.84 andstate3 ≤ 5.99 and

state11 ≤ 76.26) → Action= 1

elseif (state11 ≥ 53.97 andstate4 ≤ 5.91 and

state0 ≥ 8.45 andstate8 ≤ 7.06) → Action= 1

elseif (state3 ≤ 4.84 andstate0 ≥ 7.33 and

state12 ≥ 43.66 andstate8 ≤ 5.57) → Action= 2

else → Action= 0

While not the focus of this work, we found it interesting that
the policy was able to be summarized with only four rules,
obtaining over 87% accuracy on when using stratified cross-
validation.

2Recall that the reward in Keepaway is +1 per time step, or1

10

of a simulator second. Thus, the reward for the first hour of training
is always60×60×10 = 36000 — a metric for the total reward over
time must account for the rewardper episodeand simply summing
the total amount of reward accrued is not appropriate.
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Figure 1: This graph summarizes performance of Sarsa learning in
Keepaway using four different algorithms. One demonstration of
20 episodes was used for all threeHAT learners. Error bars show
the standard error in the performance.

Method Jumpstart Final Total Reward
No Prior N/A 14.3 380
Value Bonus 0.57 15.1 401
Extra Action -0.29 16.0 407
PPR -0.30 15.2 411

Table 1: This table shows the jumpstart, final reward and total re-
ward metrics for Figure 1. Values inbold have statistically signifi-
cant differences in comparison to the No Prior method (p < 0.05).

Finally, agents are trained in 3 vs. 2 Keepaway without
using transfer rules (No Prior), using the Value Bonus, using
the Extra Action, or using the PPR method. All learning
algorithms were executed for 30 simulator hours (processor
running time of roughly 2.5 hours) to ensure convergence.

Figure 1 compares the performance of the four methods,
averaged over 10 independent trials. Using 20 episodes of
transferred data fromSubject Awith HAT can improve the
jumpstart, the final reward, and the cumulative reward. The
horizontal line in the figure shows the average duration of
the teacher’s demonstration episodes; all four of the RL-
based learning methods improve upon and outperform the
human teacher. The performance of the different algorithms
is measured quantitatively in Table 1, where significance is
tested with a Student’s t-test.

While the final reward performance of the all four meth-
ods is very similar (only Extra Action has a statistically sig-
nificant improvement over No Prior), the total reward accu-
mulated by all three algorithms is significantly higher than
with No Prior learning. This result is an indication that al-
though the same final performance is achieved in the long
term because the learning algorithm is able to learn the task
in all cases, high performance is achievedfasterby using a
small number of demonstrations. This difference can be best
observed by selecting an arbitrary threshold of episode du-
ration and comparing the number of simulation hours each
algorithm takes to achieve this performance. In the case of a
threshold of 14 seconds, we see that No Prior learning takes
13.5 hours, compared to 10.1, 8.57 and 7.9 hours for Value

Bonus, Extra Action, and PPR, respectively. These results
show that transferring information viaHAT from the human
results in significant improvements to learning.

The following sections we will explore how performance
changes with different types or amounts of demonstration.
In all further experiments we use the PPR method as it was
not dominated by either of the other two methods. Addi-
tionally, in some trials with other methods we found that the
learner could start with a high jumpstart but fail to improve
as much as other trials. We posit this is due to becoming
stuck in a local minimum. However, becauseψ explicitly
decays the effect from the rules, this phenomena was never
observed when using PPR.

Comparison of Different Teachers
Above, we used a single demonstration data set to evalu-
ate and compare three algorithms for incorporating learned
rules into reinforcement learning. In this section, we exam-
ine how demonstrations from different people impact learn-
ing performance of a single algorithm, PPR. Specifically, we
compare three different teachers:

1. Subject Ahas many years of research experience with the
Keepaway task. (The same as Figure 1.)

2. Subject B: is new to Keepaway, but practiced for approxi-
mately 100 games before recording demonstrations.

3. Subject C: is an expert in LfD, but is new to Keepaway,
practicing only 10 games.

Each teacher recorded 20 demonstration episodes while
trying to play Keepaway to the best of their ability. Figure
2 summarizes the results and compares performance of us-
ing these three demonstration sets against learning the Keep-
away task without a prior. All reported results are averaged
over 10 learning trials. Table 2 presents summary of the re-
sults, highlighting statistically significant changes in bold.

All three HAT experiments outperformed learning with-
out a bias from demonstration, with statistically significant
improvements in total reward. However, as in any game,
different Keepaway players have different strategies. While
some prefer to keep the ball in one location as long as pos-
sible, others pass frequently between keepers. As a result,
demonstrations from three different teachers led to different
learning curves. Demonstration data fromSubjects AandC
resulted in a low jumpstart, whileSubject B’s demonstration
gave the learner a significant jumpstart early in the learning
process. The final reward also increased for all threeHAT
trials, with statistically significant results in the case of Sub-
jects BandC. These results indicate thatHAT is robust to
demonstrations from different people with varying degrees
of task expertise.

Future Work and Conclusion
This paper empirically evaluatesHAT in the Keepaway do-
main, showing that just a few minutes of human demon-
stration can increase the learning rate of the task by sev-
eral simulation hours. We evaluated three different variants
which used different methods to bias learning with the hu-
man’s demonstration. All three methods performed statis-
tically significantly better than learning without demonstra-
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Figure 2: This graph summarizes performance of no prior learn-
ing and Probabilistic Policy Reuse learning using demonstrations
from three different teachers. Each teacher demonstrated for 20
episodes; the standard error over 10 trials is shown.

Method Jumpstart Final Total Reward
No Prior N/A 14.3 380
Subject A -0.30 15.2 411
Subject B 3.35 15.7 423
Subject C 0.15 16.2 424

Table 2: This table shows the jumpstart, final reward and total re-
ward metrics for Figure 2, where allHAT methods use Probabilistic
Policy Reuse with 20 episodes of demonstrated play. Values in
bold have statistically significant differences in comparison to the
No Prior method.

tion. Probabilistic Policy Reuse consistently performed at
least as well as the other methods, likely because it explic-
itly balances exploiting the human’s demonstration, explor-
ing, and exploiting the learned policy. Additional evaluation
using demonstrations from different teachers.

One of the key strengths of this approach is its robustness.
It is able to take data of good or poor quality and use it well
without negative effects. This is very important when learn-
ing from humans because it can naturally handle the noisy,
suboptimal data that usually occurs with human demonstra-
tion, allowing non-expert users to successfully train agents.

In order to better understandHAT and possible variants,
the following questions should be explored in future work:
• Can we identify the characteristics that make some sets of

demonstrations lead to better learning performance?
• Rather than performing 1-shot transfer, couldHAT be ex-

tended so that the learning agent and teacher could iterate
between RL and providing demonstrations?

• In this work, the human teacher and the learning agent had
different representations of state. WillHAT still be useful
if the teacher and agent are performing different tasks?
How similar does the demonstrated task need to be to the
autonomous learning task forHAT to be effective?
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Ferńandez, F.; Garćıa, J.; and Veloso, M. 2010. Probabilistic policy
reuse for inter-task transfer learning.Robotics and Autonomous
Systems58(7):866–871.
Grollman, D. H., and Jenkins, O. C. 2007. Dogged learning for
robots. InProceedings of the IEEE International Conference on
Robotics and Automation.
Knox, W. B., and Stone, P. 2009. Interactively shaping agents via
human reinforcement: The TAMER framework. InKCAP.
Knox, W. B., and Stone, P. 2010. Combining manual feedback
with subsequent MDP reward signals for reinforcment learning. In
AAMAS.
Kuhlmann, G.; Stone, P.; Mooney, R. J.; and Shavlik, J. W. 2004.
Guiding a reinforcement learner with natural language advice: Ini-
tial results in robocup soccer. InProceedings of the AAAI Workshop
on Supervisory Control of Learning and Adaptive Systems.
Maclin, R., and Shavlik, J. W. 1996. Creating advice-taking rein-
forcement learners.Machine Learning22(1-3):251–281.
Nicolescu, M.; Jenkins, O.; Olenderski, A.; and Fritzinger, E.
2008. Learning behavior fusion from demonstration.Interaction
Studies9(2):319–352.
Noda, I.; Matsubara, H.; Hiraki, K.; and Frank, I. 1998. Soccer
server: A tool for research on multiagent systems.Applied Artifi-
cial Intelligence12:233–250.
Price, B., and Boutilier, C. 2003. Accelerating reinforcement learn-
ing through implicit imitation. Journal of Artificial Intelligence
Research19:569–629.
Rummery, G., and Niranjan, M. 1994. On-line Q-learning us-
ing connectionist systems. Technical Report CUED/F-INFENG-
RT 116, Engineering Department, Cambridge University.
Selfridge, O. G.; Sutton, R. S.; and Barto, A. G. 1985. Training
and tracking in robotics. InIJCAI.
Singh, S., and Sutton, R. S. 1996. Reinforcement learning with
replacing eligibility traces.Machine Learning22:123–158.
Smart, W. D., and Kaelbling, L. P. 2002. Effective reinforcement
learning for mobile robots. InICRA.
Stone, P.; Kuhlmann, G.; Taylor, M. E.; and Liu, Y. 2006. Keep-
away soccer: From machine learning testbed to benchmark. In
Noda, I.; Jacoff, A.; Bredenfeld, A.; and Takahashi, Y., eds.,
RoboCup-2005: Robot Soccer World Cup IX, volume 4020.
Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Reinforce-
ment learning for RoboCup-soccer keepaway.Adaptive Behavior
13(3):165–188.
Sutton, R. S., and Barto, A. G. 1998.Introduction to Reinforcement
Learning. MIT Press.
Taylor, M. E., and Stone, P. 2007. Cross-domain transfer for rein-
forcement learning. InICML.
Taylor, M. E., and Stone, P. 2009. Transfer learning for reinforce-
ment learning domains: A survey.Journal of Machine Learning
Research10(1):1633–1685.
Taylor, M. E.; Stone, P.; and Liu, Y. 2007. Transfer learning via
inter-task mappings for temporal difference learning.Journal of
Machine Learning Research8(1):2125–2167.
Torrey, L.; Walker, T.; Shavlik, J. W.; and Maclin, R. 2005. Using
advice to transfer knowledge acquired in one reinforcement learn-
ing task to another. InECML.
Witten, I. H., and Frank, E. 2005.Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann.


