Reinforcement Learning from Demonstration through Shaping

Tim Brys and Anna Harutyunyan
Vrije Universiteit Brussel
{timbrys, aharutyu} @vub.ac.be

Matthew E. Taylor
Washington State University
taylorm @eecs.wsu.edu

Abstract

Reinforcement learning describes how a learning
agent can achieve optimal behaviour based on in-
teractions with its environment and reward feed-
back. A limiting factor in reinforcement learning
as employed in artificial intelligence is the need
for an often prohibitively large number of environ-
ment samples before the agent reaches a desirable
level of performance. Learning from demonstra-
tion is an approach that provides the agent with
demonstrations by a supposed expert, from which
it should derive suitable behaviour. Yet, one of
the challenges of learning from demonstration is
that no guarantees can be provided for the qual-
ity of the demonstrations, and thus the learned be-
havior. In this paper, we investigate the intersec-
tion of these two approaches, leveraging the theo-
retical guarantees provided by reinforcement learn-
ing, and using expert demonstrations to speed up
this learning by biasing exploration through a pro-
cess called reward shaping. This approach allows
us to leverage human input without making an er-
roneous assumption regarding demonstration op-
timality. We show experimentally that this ap-
proach requires significantly fewer demonstrations,
is more robust against suboptimality of demonstra-
tions, and achieves much faster learning than the
recently developed HAT algorithm.

1 Introduction

Reinforcement learning (RL) has long been recognized as
an approach animals use to learn and adapt to situations,
by associating positive (and negative) stimuli with situations
and responses [Thorndike, 1911; Skinner, 1938]. As RL
was introduced in artificial intelligence [Sutton and Barto,
1998], simple algorithms were developed that operate with
little prior knowledge and have strong theoretical guaran-
tees for convergence to optimal behaviour. Yet, exactly be-
cause of this lack of prior knowledge, these algorithms of-
ten require (too) many experiences for learning, preventing
them from being practical in most real world situations. A
lot of progress is being made towards mitigating this sam-
ple complexity problem by incorporating prior knowledge

Halit Bener Suay and Sonia Chernova
Worcester Polytechnic Institute
{benersuay, soniac } @wpi.edu

Ann Nowé
Vrije Universiteit Brussel
anowe@vub.ac.be

of various forms into the learning process [Ng er al., 1999;
Taylor and Stone, 2009].

Meanwhile, in real world domains (e.g., robotics) previous
work focused on using prior knowledge from expert demon-
strators to render the learning problem tractable and speed up
learning [Argall ef al., 2009]. A (human) demonstrator pro-
vides examples of how to achieve a task, and the agent uses
these demonstrations to generate behaviour that mimicks and
generalizes them. Even though this learning from demonstra-
tion (LfD) approach has had successes, physical and compu-
tational differences between demonstrator and learning agent,
and limitations of the demonstrator, typically result in subop-
timal demonstrations, compromising the quality of behaviour
the agent derives from such demonstrations [Atkeson and
Schaal, 1997; Taylor et al., 2011b].

In this work, we look at the intersection of these two ways
of agent learning. We want to leverage the theoretical guar-
antees for optimality and convergence available in RL, where
the agent is provided with the ground truth, i.e. a reward sig-
nal that defines the task. To overcome the large sample com-
plexity of RL algorithms, we integrate demonstrations, not to
directly derive behaviour, but as a bias for the RL process.
Treating the demonstrations as a heuristic allows us to relax
the often faulty assumption of expert or demonstration opti-
mality.

We first review some preliminaries on reinforcement learn-
ing and learning from demonstration, and describe how these
two techniques can be elegantly integrated through a process
called reward shaping. Experiments demonstrate the practi-
cal usefulness of the approach on a pole balancing task and
the Mario domain [Karakovskiy and Togelius, 2012].

2 Preliminaries

2.1 Reinforcement Learning

Reinforcement learning (RL) [Sutton and Barto, 1998] is a
paradigm that describes how an agent can improve its be-
haviour based on reward and punishment received from in-
teractions with its environment. Maximizing the rewards ac-
cumulated over time equals solving the task by definition. We
define an RL problem as a Markov Decision Process (MDP)
(S, A,T,v,R). S defines all environment states that can be
observed, and A defines the actions an agent can take to affect
this environment. 7' describes the dynamics of the system,

defining the probability of the environment transitioning from
state s to state s, given that action a was taken: T'(s'|s, a).
R is the reward function that yields a numerical reward for
every state transition, defining the task. Finally, v is called
the discounting factor, and defines how important long-term
rewards are, i.e. how short- or far-sighted the agent is.

The goal of an RL agent is to find behaviour, i.e. a pol-
icy 7 : S — A that maximizes the expected, discounted
accumulation of rewards. Many approaches do not directly
search the policy space, but instead estimate the quality of ac-
tions in each state, and derive a policy from these estimates.
The quality of states and actions is defined by the Q)-function
Q@ : S x A — R. Temporal difference algorithms, such as
QQ-learning [Watkins, 1989], approximate the true Q-function
by iteratively updating their estimates:

Q(s,a) + Q(s,a) + ad

where « is the learning rate, and ¢ is the temporal-difference
error, the difference between the previous estimate and the
target being tracked:

§ = R(s,a,s") + ymax Q(s',a’) — Q(s, a)

R-learning is guaranteed to converge to the true ()-values,
and thus an optimal policy, given certain assumptions such as
a decreasing a learning rate [Tsitsiklis, 1994].

2.2 Reward shaping

One of the reasons that most value-based RL algorithms are
slow, is that they do not employ prior knowledge to kickstart
learning. Therefore, the best an RL algorithm can initially do
is to explore state-action pairs uniformly at random. Only af-
ter enough state transitions and their associated rewards have
been observed can the agent start to exploit this knowledge by
biasing its action selection towards what its estimates indicate
are good actions.

Reward shaping, derived from behavioural psychol-
ogy [Skinner, 1938], is a popular way of including prior
knowledge into the learning process in order to alleviate this
problem. It provides a learning agent with extra intermediate
rewards, much like a dog trainer would reward a dog for com-
pleting part of a task. This extra reward can enrich a sparse
base reward signal (for example a signal that only gives a
non-zero feedback when the agent reaches the goal), provid-
ing the agent with useful gradient information. This shaping
reward F' is added to the environment’s reward R to create a
new composite reward signal that the agent uses for learning:

Ri(s,a,8') = R(s,a,5') + F(s,a,5)

Of course, since the reward function defines the task, mod-
ifying the reward function may modify the total order over
policies, and make the agent converge to suboptimal policies
(with respect to the environment’s reward alone).

If we define a potential function ® : S — R over the state
space, and take F' as the difference between the new and old
states’ potential, Ng et al. [1999] proved that the total order
over policies remains unchanged, and convergence guaran-
tees are preserved:

F(s,a,8) =vy®(s") — ®(s)

Prior knowledge can be incorporated by defining the po-
tential function ® accordingly. The shaping’s effect is that
the agent’s exploration will no longer be uniformly random
initially, but instead, it will be biased towards states with high
potential. For example, using height as a potential function
in Mountain Car [Singh and Sutton, 1996] biases the agent
to selecting actions that will increase height. Since the goal
location in Mountain Car lies on top of a hill, shaping using
this heuristic helps an agent solve that task faster.

The definition of F' and ® was extended by [Wiewiora et
al., 2003] to include actions, allowing for the incorporation
of behavioural knowledge, reflecting the quality of actions as
well as states:

F(s,a,s',a") =~v®(s',a’) — ®(s,a)

Wiewiora et al. extended Ng’s proof and show that this
formulation also preserves the total order over policies.

2.3 Learning from Demonstration

As in RL, an agent operating in a learning from demonstra-
tion (LfD) setting looks for a policy' that allows it to exe-
cute a task [Argall et al., 2009]. While LfD methods vary
greatly, there is typically no ground truth, no reward signal
that allows the agent to evaluate its behaviour. Instead, the
agent is provided with a number of teacher demonstrations
of the task, from which it needs to derive a policy that re-
produces and generalizes the demonstrations. These demon-
strations typically consist of sequences of state-action pairs
{(507 (10), SRRE) (STH an)}

There are a number of factors that limit the quality of
the policy derived from demonstrations by LfD techniques.
One is that demonstrations often do not cover the whole state
space, and that generalizations to these states may be far from
correct [van Lent and Laird, 2001; Nicolescu and Mataric,
2003]. Furthermore, the quality of the demonstrations them-
selves can be suboptimal, limiting the quality of policies de-
rived from them [Atkeson and Schaal, 1997]. These problems
are recognized in the community, and one of the proposed di-
rections forward is to use demonstrations to kickstart an RL
process [Argall er al., 2009]. We propose our contribution
towards that goal in the next section.

3 Shaping Reinforcement Learning using
Demonstrations

Simply stated, the setting we are interested in is one where
both the ground truth (reward) and demonstrations are avail-
able. From here on, we refer to this intersection of RL and
LfD as RLfD.? We recognize that defining an informative re-
ward signal for a task can be non-trivial in complex domains,
but we argue that one can often construct a very sparse signal
that only gives non-zero feedback when the goal is reached
or when the task can no longer be completed. Of course,
such sparse reward signals typically make learning slow be-
cause it takes many experiences for the sparse information to
propagate throughout the agent’s representation of the state-
space. We propose to make the demonstrations available to

"'We consider plans to be policies, and trajectories partial ones.
Not to be confused with Robot Learning from Demonstration

the learning agent for use as a bias for its exploration, helping
the agent find and propagate the sparse rewards much faster.
To achieve this bias, we incorporate the demonstrations in
the learning process as a potential-based reward shaping func-
tion. Therefore, we need to encode the demonstrated state-
action pairs as a meaningful potential function. Intuitively,
we want the potential ®2 (s, a) of a state-action pair (s, a) to
be high when action a was demonstrated in a state s¢ similar
to s, and we want the potential to be low when this action
was not demonstrated in the neighbourhood of s. To achieve
this, we need a similarity metric for state-action pairs. In this
work, we use a non-normalized multi-variate Gaussian to cal-
culate similarity between state-action pairs. More precisely,
assuming discrete actions, if two state-action pairs differ in
the action, their similarity is zero, otherwise, we calculate:

g(s, 5%, %) = e(-3(=sDT= 5=s)

Similarity is 1 when s = s%, and trails to zero as s and
s% get further apart. The covariance matrix ¥ is crucial in
defining the sphere of influence of demonstrated state-action
pairs, and needs to be tailored for each domain. This could be
automated by including metric learning techniques [Taylor et
al., 2011al. In this work, we always normalize the state space
(map state variables to [0, 1]), and use X of the form ¥ = o1,
i.e. the identity matrix times a constant .

To calculate the potential of a given state-action pair, we
look through the set of demonstrations, and find the sample
with the same action that yields the highest similarity:

P (s,a) = max g(s, s%, %)
(s4,a)

In other words, the potential function is piecewise Gaussian,
a landscape with mountain ranges along the demonstrated tra-
jectories, and flat plains where no demonstrations were pro-
vided.

This potential function can then be integrated in two ways
into the learning process: first, by creating a shaping function
FP and adding it to the base reward:

FP(s,a,8',a') = y@7(s',a’) — @ (s,)

This rewards the agent for taking actions that were demon-
strated in a similar state.
Second, by initializing the Q-function with ®° [Wiewiora

et al., 2003]:
Qo(s,a) = @D(s,a)

This initialization allows the agent to immediately use the
bias in action selection.

Shaping after initialization helps to maintain this bias, as
the initial bias can be quickly lost. Note that initialization and
potential-based shaping have only been shown to be equiva-
lent given the same experiences [Wiewiora et al., 2003]. In
the case of complex function approximators, where initial-
ization is non-trivial or impossible, the ()-value reuse tech-
nique [Taylor et al., 2007] can be used to achieve the same
effect as initialization.

This approach to learning, i.e. relying on the ground truth
for learning and using demonstrations as a heuristic bias, has
several advantages. Because we use RL on the true reward

signal, we leverage the available theoretical guarantees for
convergence and optimality. The potential sub-optimality of
demonstrations will furthermore not compromise optimality,
thanks to the theoretical guarantees of reward shaping. Fi-
nally, the problem of high sample complexity in RL without
prior knowledge is mitigated thanks to the exploratory bias
introduced by the demonstrations.

4 Related Work

In essence, RLfD techniques have two ways to bias the RL
process based on demonstrations: either by affecting values
(Q or R; a priori or during learning), or by taking over action
selection (or both).

The prior work most closely related to ours is HAT, an al-
gorithm that leverages transfer learning principles to combine
demonstrations and RL [Taylor et al., 2011b]. The algorithm
derives a policy from the demonstrated samples using a sim-
ple classifier, much like some LfD techniques would do. This
policy is then ‘transferred’ to the learning process that learns
on the environment’s reward. Transfer is achieved by either
initializing)-values, or probabilistically reusing the classi-
fier’s policy. We compare our technique with value-based
HAT in the experimental section.

Smart and Kaelbling [2002] are also interested in the same
RLfD setting. The approach they propose splits learning in
two phases. In the first phase, the demonstrator is in control,
choosing actions, and the RL agent passively learns from the
demonstrations. In the second phase, the RL agent is put in
control of the system and continues learning.

A lot of other research considering the intersection of LfD
and RL focusses on learning a model of the environment (and
possibly a reward function), and using RL on simulated expe-
riences in that model to build a good policy [Abbeel and Ng,
2005; Argall er al., 2009]. Learning a model is non-trivial,
and the quality of the policy derived from this model of course
depends on the quality of the model itself. We are more in-
terested in work that avoids this model learning phase, and
learns in the actual environment or a simulation.

Other authors do not consider demonstrations, but allow
a human to interactively provide reward or advice during
agent learning [Thomaz and Breazeal, 2006; Knox and Stone,
2010]. In contrast, we use demonstrations to shape the real
reward function defined by the environment.

S Experiments

To demonstrate the potential usefulness of the approach pro-
posed in this work, we perform experiments in two domains:
Cart Pole and Mario. We compare several approaches, to
cover the whole spectrum between RL and LfD:

RL (Q())-learning)

RL{D (Q(X)-learning+shaping)

RLfD (Q(X)-learning+HAT)

LfD (C4.5 decision tree classifier [Quinlan, 1993])

We will use a range of different demonstrations, varying in
length and demonstrator (human, RL expert, etc.). For each
type, we generated 10 distinct demonstrations, each of which

128 demonstration samples in Cart Pole

1000 S o -
D AP~ @M&/ \\/‘\E&\A@ /\—v@w\ v
8001 N
/
600F |
[/
9 /
g /
n e
cf - Vand
400\3 1N 7//%—\,,/\/\/%@/‘ v\u—%ﬁf‘ ‘%/
. —RL
2005 A S - RLID (shaping)
-5 RLID (HAT)
LD
% 200 400 600 800 1000

Episode

Figure 1: Comparison of RL and RLfD learning provided
with a demonstration of 128 steps in Cart Pole (LfD perfor-
mance is provided for comparison). RLfD (shaping) manages
to greatly improve learning compared to RL.

is used in 10 distinct trials. All experiments are therefore
averaged over 100 trials for statistical significance. In every
figure, error bars indicate the 95% confidence interval. Algo-
rithm parameters were hand selected after a set of preliminary
experiments.

5.1 Cart Pole

Cart Pole [Michie and Chambers, 1968] is a task in which
the agent controls a cart with a pole on top. The goal is to
keep the pole balanced for as long as possible. The agent can
move the cart either left or right within a given interval in
a single dimension. The state space consists of the position
of the cart, its velocity, the angle of the pole and its angular
velocity (x, &, 0, 6). To learn the task with RL, we use Q(\)-
learning with tile-coding function approximation. Parameters
are o« = %, v=1,e=10.05, A = 0.25, with 16 10 x 10 x
10 x 10 tilings. For the shaping component, o = 0.2, and
we both initialize and shape with the potential function. With
HAT, parameters are B = 1, meaning that the ()-values of
the actions suggested by the LfD policy are initialized to 1
(and the others to 0), and C' = 0, i.e. the LfD policy is not
exclusively executed during the initial phases of learning.

Figure 1 shows learning curves for RL and RLfD (shap-
ing and HAT), provided with an expert demonstration of 128
steps.® Given this demonstration, RLfD (shaping) manages to
learn much faster compared to basic RL that only learns from
the sparse reward signal. RLfD (HAT) performs worse, as the
demonstration is not sufficient to derive a meaningful classi-
fier that summarizes the demonstrator’s policy, as shown by
the LfD performance in the graph.

To evaluate the effect of demonstration length on speed of
learning and policy quality, we experimented with demon-
strations ranging from just a single step, to demonstrations
of 4096 steps. Figure 2 (a) shows the average performance
of each of the on-line learning techniques (RL and RLfD)

3The demonstrator is an RL agent that learned a near-optimal
policy with the same setup as the RL baseline agent. The demon-
strations include 5% random moves.

during learning (indicative of the speed of learning). RLfD
(shaping) needs many fewer demonstrated samples to quickly
learn good policies than RLfD (HAT), which requires more
samples in order to derive a meaningful classifier. The final
quality of the policies generated by all techniques (after 1000
learning episodes for RL and RLfD) is shown in the (b) part of
that figure. Here we see the advantage of combining RL and
LfD. LfD on its own manages to build near-optimal policies
only with the longest of demonstrations. RLfD (HAT), bias-
ing learning with the classifiers built by our LfD implemen-
tation, improves final policy quality over basic LfD through
on-line experiences. Finally, RLfD (shaping) obtains near-
optimal policies with demonstrations that are orders of mag-
nitude smaller, and does so much faster than basic RL. This
indicates better sample efficiency of RLfD (shaping) in cer-
tain domains. In Cart Pole, an optimal policy can be suffi-
ciently well demonstrated with just two samples, and RLfD
(shaping) manages to take advantage of this.

The fact that for the longest demonstrations, RLfD (shap-
ing) is outperformed by RLfD (HAT) and LfD can be ex-
plained by C4.5 smoothing out the inconsistencies present in
the demonstrations (5% random moves), while RLfD (shap-
ing) uses each sample individually, and comparatively suffers
from the accumulation of inconsistent data in longer demon-
strations. This is the difference between using the demon-
strations globally or locally. The same effect was observed
by Sammut et al. [2002] when applying a C4.5 decision tree
to flight trajectories supplied by human pilots. The many
inconsistent and correcting actions taken by the pilots were
“cleaned up” by the decision tree, resulting in much smoother
control than that exhibited by the human demonstrators.

5.2 Mario

The Mario benchmark problem [Karakovskiy and Togelius,
2012] is a public reimplementation of the original Super
Mario Bros® game. It involves an agent (Mario) that nav-
igates a 2D level, collecting points for finishing the level,
finding coins, getting hurt (negative points), etc. The goal
is to collect as many points as possible. An episode is ended
when time runs out, Mario dies, or when he finishes the level.
The state space in Mario is fairly complex, as Mario observes
the locations and types of enemies on the screen, he observes
all information pertaining to himself, e.g. what mode he is in
(small, big, fire), and furthermore he is surrounded by a grid-
like receptive field in which each cell indicates what type of
object is in it (a brick, a coin, a mushroom, an enemy, etc.).
Mario can take 12 distinct composite actions, each being a
combination of one action from these three sets: {left, right,
no direction}, {jump, do not jump} and {run, do not run}.

In the experiments involving RL, we use tabular Q())-
learning. The state-space used by the agent consists of four
boolean variables (telling whether Mario is able to jump, on
the ground, which direction he is facing, and whether he is
able to shoot fireballs), and two variables indicating the rela-
tive position (z and y) of the closest enemy within a 21 x 21
grid surrounding Mario. Learning parameters are o = 0.01,
v = 0.9, ¢ = 0.05, and A = 0.5. For RLfD (shaping),
o = 0.5, and we initialize the @)-function with the potential
function. For HAT, B = 1 and C' = 0.

Varying demonstration length in Cart Pole

10001

8001

.
iy
400,

2001 /f\@ f
_ ~E-RLfD (HAT)

Average performance during learning

—RL
~©-RLfD (shaping)
0 b . .
10° 10' 10° 10°
Demonstration length
(@

Varying demonstration length in Cart Pole

10001 - 53]
DP—F D DD D & £
ZAaaASRASSSS N
@)
800 JE(7% ?
3
5
g 600F
S
£
[
Qo
< 400+
£
w AN
—RL
2007 Eﬁ/ ~5-RLID (shaping)
-E-RLfD (HAT)
PPN LfD
0 N 1 2 =
10 10 10 10
Demonstration length
(b)

Figure 2: The effect of demonstration length on RLfD and LfD in Cart Pole (RL performance provided for comparison). Figure
(a) shows average performance over 1000 learning episodes, an indication of the speed of learning (excluding LfD), (b) shows
the final performance (after 1000 learning episodes) of the policies proposed by each technique. RLfD (shaping) needs many
fewer demonstration samples to quickly learn good policies in this domain. Note the x log-scale.

Single demonstration by suboptimal RL agent

3000
25001
20001

15001/ @)

10008 @/,

~©-RLfD (shaping)
- RLID (HAT)
LfD

Steps

1
500f

-500F

- OOO0 200 400 600 800 1000

Episode

Figure 3: Comparison of RL and RLfD learning provided
with a single run demonstration by a suboptimal RL agent in
Mario (LfD performance is provided for comparison). RLfD
(shaping) generates faster learning compared to RL and RLfD
(HAT).

Figure 3 shows learning curves for RL and RLfD (shaping
and HAT), provided with a demonstration by a suboptimal RL
agent. The demonstration consists of a single run in Mario,
either ending in death, time-out or completion of the level.
This demonstrator achieves below 1000 points on average.
RLfD (shaping) again yields much faster learning than RL
alone, while RLfD (HAT) yields a small initial improvement,
but otherwise shows statistically the same behaviour as RL.
Notice the LfD line, showing that the quality of a classifier
derived from this suboptimal demonstration is low.

Besides potential suboptimality of demonstrations, another
problem for LfD can be the differences in embodiment and
capabilities of the demonstrator and the student. In the fol-
lowing experiment, we look at four types of demonstrators,
ordered by the quality of their demonstrations (the average
demonstrator performance is indicated between brackets):

e A suboptimal RL agent. This demonstrator agent has the
same internal representation as the student agent, but its
policy and demonstrations are suboptimal. (962 points)

e A handcoded agent. This agent randomly takes one of
three actions in any state: (1) go right, (2) go right and
jump, and (3) go right, jump and run. This policy is easy
to summarize, but also suboptimal. (1250.4 points)

e A human demonstrator. Humans are very different from
the student agent in internal representation and capabil-
ities. Humans are less responsive, and often take time
to asses the situation in this domain, resulting in very
inconsistent demonstrations. (1923.6 points)

e A (near-) optimal RL agent. This demonstrator has the
same internal representation as the student agent, and
provides near-optimal demonstrations. (2619.4 points)

Figures 4 (a) and (b) show respectively the average perfor-
mance during learning and the final performance (after 1000
episodes of learning). Despite the suboptimality of demon-
strations and differences in internals, RLfD (shaping) shows
a higher sample-efficiency while converging on equally good
policies as other techniques. Deriving a policy by using the
C4.5 LD technique alone is insufficient in this case. The
consistency (or summarizability) of a demonstration clearly
affects the LfD technique, with the simple hand-coded policy
demonstrations yielding the best LfD performance, while the
very inconsistent human demonstrations yield the worst LfD
performance. Yet, using these low quality policies to boot-
strap learning in RLfD (HAT) yields improved performance
compared to just RL, while RLfD (shaping) remains more
sample-efficient.

6 Discussion

The results presented in this paper confirm the intuition that
combining RL and LfD can be a powerful way to build good
policies. The naive LfD technique employed generated low

Single demonstration by different demonstrators in Mario
2500¢

« RL @)
224001 O RLfD (shaping) O
= 0 RLID (HAT)
2300

[0)
®

20001

NN
= N
o O
o o

[f i {

Suboptimal RL Hand-coded

(a)

Average performance during |

-

~ o]

o o

o o
T

1600

Human Optimal RL

Single demonstration by different demonstrators in Mario
35Q0c
| I Demonstration EERLID (shaping) Ml RLD (HAT) ZZ4L1D —RL
30001

2500r

2000r

1500

1000

Final performance

500

0

-500r

-1000

Suboptimal RL Hand-coded Human Optimal RL

(b)

Figure 4: The effect the type of demonstrator has on RLfD and LfD in Mario (RL performance provided for comparison).
Figure (a) shows average performance over 1000 learning episodes, an indication of the speed of learning (excluding LfD), (b)
shows the final performance (after 1000 learning episodes) of the policies proposed by each technique. RLfD (shaping) always

outperforms or matches the performance of other techniques.

quality policies, in general, due to the small size or inconsis-
tency of the demonstrations. But, integrated with RL, these
demonstrations proved to be a useful bias for finding better
policies quickly. RLfD (HAT) depends on the ability of the
LfD technique to summarize a good policy, and therefore also
suffers (to a lesser extent) from short, inconsistent demonstra-
tions, while it performs well with more extensive demonstra-
tions. In these experiments, RLfD (shaping) appeared to be
better at exploiting the limited and inconsistent information
provided by the demonstrations, by using each demonstrated
sample locally. When enough demonstrations are available
on the other hand, summarizing them in a global way can be
more beneficial.

Before we conclude, we need to discuss some properties of
our proposed approach. We formulated RLfD (shaping) in a
mathematically succinct and readable way that is not neces-
sarily the most computationally efficient way of calculating
the potential function. Instead of calculating the Gaussian for
each demonstrated state-action pair, one can store the demon-
strations in a k-d tree and quickly find the closest demonstra-
tion. Alternatively, samples that are too similar can be dis-
carded from the demonstrations to reduce computation times.

Furthermore, there are some design decisions that impact
the effect of the technique. X and the scaling of the potential
function (always 1 in our experiments) are free parameters
that impact how much effect the technique has on learning.
Also, the potential function can be used to shape, initialize or
both. In Cart Pole, both initializing and shaping proved to be
the best alternative, while in Mario, this proved less effective
than only initializing (results not included).* These factors
make that the technique is not yet an off-the-shelf solution,
but rather one requiring some tuning. Further research should
help mitigate these problems: ensemble techniques could
prove to be a promising step towards avoiding parameter tun-
ing, by allowing learning in parallel with multiple differently

“Note that our Mario setup is non-Markovian (partial represen-
tation of the state-space), which can cause abnormal behaviour.

configured shapings and initializations [Brys et al., 2014;
Harutyunyan et al., 2015].

7 Conclusions

Learning from demonstration (LfD) and reinforcement learn-
ing (RL) provide two approaches for an agent to learn how
to achieve a task. The former relies on expert demonstra-
tions, the latter relies on a reward signal. Both approaches
have their advantages and limitations. RL often provides the-
oretical guarantees for convergence to the optimal policy, but
suffers from a high sample complexity due to sparse, uninfor-
mative rewards. LfD techniques on the other hand can learn a
policy off-line, but often lack guarantees for the quality of the
policy, which can be compromised due to suboptimal demon-
strations, or differences in demonstrator and student embod-
iment and capabilities. We have investigated the intersection
between the two approaches (RLfD), a setting where both the
ground truth (reward), as well as demonstrations are avail-
able. Using demonstrations as a bias for learning allows us
to relax the assumption of demonstration optimality, while
speeding up learning and preserving convergence guarantees.
We have shown that our new approach based on reward shap-
ing can be more sample-efficient and more robust against sub-
optimal and inconsistent demonstrations in two simulated do-
mains.

Future work includes implementing and comparing these
algorithms on a robotic manipulation setup, as robotics has
a critical need for more efficient learning algorithms. Addi-
tionally, work combining multiple shapings through ensem-
ble techniques could be used to combine demonstrations from
multiple teachers.

Acknowledgments

Tim Brys is supported by the FWO, and Anna Harutyunyan
by the IWT-SBO project MIRAD (grant nr. 120057). This
work was furthermore supported in part by NSF IIS-1149917
and ONR N00014-14-1-0795.

References

[Abbeel and Ng, 2005] Pieter Abbeel and Andrew Y Ng.
Exploration and apprenticeship learning in reinforcement
learning. In Proceedings of the 22nd international confer-
ence on Machine learning, pages 1-8. ACM, 2005.

[Argall et al., 2009] Brenna D. Argall, Sonia Chernova,
Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and autonomous
systems, 57(5):469-483, 2009.

[Atkeson and Schaal, 1997] Christopher G. Atkeson and
Stefan Schaal. Robot learning from demonstration. In
ICML, volume 97, pages 12-20, 1997.

[Brys et al., 2014] Tim Brys, Ann Nowé, Daniel Kudenko,
and Matthew E. Taylor. Combining multiple correlated
reward and shaping signals by measuring confidence. In
Twenty-Eighth AAAI Conference on Artificial Intelligence,
pages 1687-1693, 2014.

[Harutyunyan et al., 2015] Anna Harutyunyan, Tim Brys,
Peter Vrancx, and Ann Nowé. Multi-scale reward shaping
via an off-policy ensemble. In Proceedings of the Interna-
tional Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), 2015.

[Karakovskiy and Togelius, 2012] Sergey Karakovskiy and
Julian Togelius. The Mario Al benchmark and competi-
tions. Computational Intelligence and Al in Games, IEEE
Transactions on, 4(1):55-67, 2012.

[Knox and Stone, 2010] W. Bradley Knox and Peter Stone.
Combining manual feedback with subsequent mdp reward
signals for reinforcement learning. In Proceedings of the
9th International Conference on Autonomous Agents and
Multiagent Systems, pages 5-12, 2010.

[Michie and Chambers, 1968] Donald Michie and R.A.
Chambers. Boxes: An experiment in adaptive control.
Machine intelligence, 2(2):137-152, 1968.

[Ng et al., 1999] Andrew Y. Ng, Daishi Harada, and Stuart
Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceed-
ings of the Sixteenth International Conference on Machine
Learning, volume 99, pages 278-287, 1999.

[Nicolescu and Mataric, 2003] Monica N Nicolescu and
Maja J Mataric. Natural methods for robot task learn-
ing: Instructive demonstrations, generalization and prac-
tice. In Proceedings of the second international joint con-
ference on Autonomous agents and multiagent systems,
pages 241-248. ACM, 2003.

[Quinlan, 1993] John Ross Quinlan. C4. 5: programs for
machine learning, volume 1. Morgan kaufmann, 1993.

[Sammut ez al., 2002] Claude Sammut, Scott Hurst, Dana
Kedzier, and Donald Michie. Learning to fly. Imitation
in animals and artifacts, page 171, 2002.

[Singh and Sutton, 1996] Satinder P. Singh and Richard S.
Sutton. Reinforcement learning with replacing eligibility
traces. Machine learning, 22(1-3):123—-158, 1996.

[Skinner, 1938] Burrhus Frederic Skinner. The behavior of
organisms: An experimental analysis. 1938.

[Smart and Kaelbling, 2002] William D. Smart and
Leslie Pack Kaelbling. Effective reinforcement learning
for mobile robots. In Robotics and Automation, 2002.
Proceedings. ICRA’02. IEEE International Conference
on, volume 4, pages 3404-3410. IEEE, 2002.

[Sutton and Barto, 1998] R.S. Sutton and A.G. Barto. Re-
inforcement learning: An introduction, volume 1. Cam-
bridge Univ Press, 1998.

[Taylor and Stone, 2009] Matthew E. Taylor and Peter
Stone. Transfer learning for reinforcement learning do-
mains: A survey. The Journal of Machine Learning Re-
search, 10:1633-1685, 2009.

[Taylor et al., 2007] Matthew E. Taylor, Peter Stone, and
Yaxin Liu. Transfer learning via inter-task mappings for

temporal difference learning. Journal of Machine Learn-
ing Research, 8(1):2125-2167, 2007.

[Taylor et al., 2011a]l Matthew E. Taylor, Brian Kulis, and
Fei Sha. Metric learning for reinforcement learning agents.
In Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), May
2011. 22

[Taylor ef al., 2011b] Matthew E. Taylor, Halit Bener Suay,
and Sonia Chernova. Integrating reinforcement learning
with human demonstrations of varying ability. In The 10th
International Conference on Autonomous Agents and Mul-
tiagent Systems, pages 617-624, 2011.

[Thomaz and Breazeal, 2006] Andrea Lockerd Thomaz and
Cynthia Breazeal. Reinforcement learning with human
teachers: Evidence of feedback and guidance with im-
plications for learning performance. In AAAI, volume 6,
pages 1000-1005, 2006.

[Thorndike, 1911] Edward Lee Thorndike. Animal intelli-
gence: Experimental studies. Macmillan, 1911.

[Tsitsiklis, 1994] John N. Tsitsiklis. Asynchronous stochas-
tic approximation and Q-learning. Machine Learning,
16(3):185-202, 1994.

[van Lent and Laird, 2001] Michael van Lent and John E
Laird. Learning procedural knowledge through observa-
tion. In Proceedings of the 1st international conference on
Knowledge capture, pages 179-186. ACM, 2001.

[Watkins, 1989] Christopher John Cornish Hellaby Watkins.
Learning from delayed rewards. PhD thesis, University of
Cambridge, 1989.

[Wiewiora et al., 2003] Eric Wiewiora, Garrison Cottrell,
and Charles Elkan. Principled methods for advising re-
inforcement learning agents. In ICML, pages 792-799,
2003.

