
Learning Coordinated Traffic Light Control

Tong Thanh Pham
Lafayette College

phamt@lafayette.edu

Tim Brys
Vrije Universiteit Brussel
timbrys@vub.ac.be

Matthew E. Taylor
∗

Washington State University
taylorm@eecs.wsu.edu

ABSTRACT
Traffic jams and suboptimal traffic flows are ubiquitous in
our modern societies, and they create enormous economic
losses each year. Delays at traffic lights alone contribute
roughly 10 percent of all delays in US traffic. As most traf-
fic light scheduling systems currently in use are static, set up
by human experts rather than being adaptive, the interest in
machine learning approaches to this problem has increased
in recent years. Reinforcement learning approaches are of-
ten used in these studies, as they require little pre-existing
knowledge about traffic flows. Some distributed constraint
optimization approaches have also been used, but focus on
cases where the traffic flows are known. This paper presents
a preliminary comparison between these two classes of op-
timization methods in a complex simulator, with the goal
of eventually producing real-time algorithms that could be
deployed in real-world situations.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Reinforcement Learning, DCEE, Traffic Optimization

1. INTRODUCTION
In recent years, multiagent systems have been gaining

traction as a credible platform for tackling real-world prob-
lems. Distributed problem solving often allows handling of
an exponential amount of information and variables that
might otherwise cripple a centralized approach. Indeed, the
need for this flexibility and robustness is no longer theo-
retical: the increase in human population in the biggest
metropolitan areas has led to tremendous stresses on infras-
tructure, which must either increase in quantity or improve
in quality to simply maintain the current quality of traffic
flows. The motivation for further development of multia-
gent techniques is twofold: to manage the rising complexity
in handling electronic infrastructure, and to improve perfor-
mance by replacing or enhancing existing solutions.

∗Much of this research was done while the third author was
at Lafayette College.

In recent years, interest in applying various computational
techniques to the problem of improving traffic signal opera-
tion has been on the rise. According to recent surveys [6],
delays at traffic signals account for up to 10 percent of all
traffic delays in the US. Increasing numbers of traffic lights
are being built to handle growing vehicle and pedestrian
traffic; this problem domain is rich in terms of the number
of potential autonomous agents sharing the same finite re-
sources, that influence both other agents and the efficiency
of the human traffic flow.

Recent AI approaches to traffic engineering include ap-
plying Distributed Constraint Optimization (DCOP) algo-
rithms to this domain [8]. However, the DCOP framework
requires that the reward of every action combination be
known a priori, making it difficult to handle non-stationary
traffic distributions. In contrast, our previous work has ex-
tended the DCOP framework to the Distributed Coordina-
tion of Exploration and Exploitation [17] (DCEE) frame-
work. In order to address the importance of dynamic and
unknown rewards, DCEE algorithms take a multiagent ap-
proach towards balancing exploiting known good configura-
tions with exploration of novel action combinations to at-
tempt to find better rewards.

Another popular AI approach to traffic problems is to ap-
ply Reinforcement Learning [16] (RL) algorithms. Several
RL algorithms have previously been applied to the control
of traffic lights [10], such as Q-Learning [1, 14], SARSA [18],
SCQ-Learning [9], and others [3]. Drawing from these stud-
ies, we will build an RL algorithm to benchmark our DCEE
methods against.

We evaluate our ideas by implementing DCEE and RL al-
gorithms in a modified version of the traffic simulator from
UT-Austin [7]. We limit the scope of our experiments to
Manhattan traffic grids. Our objective metrics are the av-
erage delay of all vehicles over time and the rate of vehicles
passing through the grid.

2. BACKGROUND
This section provides background on the traffic optimiza-

tion problem, as well as the two approaches used in this
paper’s experiments.

2.1 Traffic Optimization
Given this problem domain’s affinity to an exponential

growth in complexity (in terms of the number of possible
configurations and eventualities that the agents – traffic
lights, commuters – can give rise to), it comes as no surprise
that many works have attempted to address improving traf-

fic signal performance. The 1970s saw the development of
SCOOT (Split, Cycle and Offset Optimization Technique)
in the UK [12]. This system features a central computer sys-
tem to monitor a series of intersections, attempting to min-
imize the sum of the average queues and number of vehicle
stops. Notably, SCOOT makes use of a model of the traffic
flow based on Cyclic Flow Profiles (average one-way flow of
vehicles past a fixed point on the road) measured real-time
using sensors. While the system has been observed to reg-
ister a 12 percent improvement over fixed-time systems, it
is not readily amendable to scaling due to the need for cen-
tralized control. Another related system is SCATS (Sydney
Coordinated Adaptive Traffic System), which uses multiple
levels of control, segregated by scale: from local, regional,
to central. However, grouping signals into subsystems to be
managed by higher levels are not done automatically, and
thus incurs setup costs for expansion and changes.

Aside from these well known responsive control systems,
there also exist adaptive systems such as RHODES [11],
which features more involved sensor systems, models, allow-
ing them to do away with explicit cycle length definitions.
RHODES also has a hierarchical architecture, with the low-
est level control making immediate second-by-second deci-
sions on signal phase and durations. The middle and highest
level form a feedback loop with this lowest level to predict
demands and flows over longer period of time. Despite this
sophistication, the system still requires heavy use of models,
which can take time to perfect, as well as requiring the setup
of the hierarchy.

When selecting a traffic optimization system to deploy, it
is always important to consider what sensors (inputs) are
required, what knowledge must be built into the system,
how adaptive the system is, and what metrics (outputs) will
be optimized. As AI researchers, we are most interested in
methods which use low-cost sensors, have minimal knowl-
edge requirements, can quickly adapt to changes in traffic
patterns, and can work to optimize many different metrics.

2.2 DCEE
When formulating multi agent problems, there is a spec-

trum from centralized (one agent gathers all of the informa-
tion, make a decision, and distributes this decision) to de-
centralized (all agents have their own local state and do not
coordinate with others) decision making. The DCEE frame-
work strikes a balance between these two extremes by allow-
ing agents to form “neighborhoods;” each agent shares infor-
mation and coordinates with only a limited set of agents.
Such shared coordination should improve the total reward
relative to each agent disregarding the state of all other
agents, while requiring many fewer messages and compu-
tational resources than full centralization.

Formally, a DCEE problem [17] consists of:

1. a set of variables, V = x1, x2, ..., xn, where xi ∈ Di

2. a set of agents, each controlling a variable from V (in
the general case, one agent could control multiple vari-
ables)

3. an (initially unknown) reward function fij : Di×Dj →
R, which gives the cost of a binary constraint (xi ←
di, xj ← dj), where di ∈ Di, dj ∈ Dj

4. a set time horizon T ∈ N

2 31

R
1,2 R

2,3
x

x
2

1

0 1

0 ?

?

...

n

? ? ? ?

?

?

?

3

?

15

m

x
2

x
1

0 1

0 7 ?

...

?

?

m

k ? ? ?

?

?

1 ? ?

Figure 1: This figure shows an example 3-agent
DCEE. Each agent controls one variable and the set-
tings of these three variables determine the reward
of the two constraints (and thus the total team re-
ward).

5. a set of assignments of values to variables A0, ..., AT to
be processed sequentially by the agents. Each assign-
ment At is a tuple (x1t ← d1t, x2t ← d2t, ..., xnt ← dnt)

The goal is to maximize the total reward during the time
horizon:

R =
T∑

t=0

∑
xi,xj∈V

fi,j (di,t, dj,t)

The simplest cases of DCEE problems make use of bi-
nary constraints between pairs of agents (see Figure 1 for an
example). As mentioned earlier, the reward function f is ini-
tially unknown, and must be empirically estimated by trying
out different variable assignments with an agent’s neighbors.
Communication among agents in a neighborhood is essential
so that each agent can build up its mapping of binary con-
straints to (approximate) rewards for each of its neighbors.

An important factor that shapes coordination among neigh-
boring agents is the concept of k-movement, where at most k
agents can change their variables simultaneously in a neigh-
borhood every round. Larger k values allows for more joint
moves, but sometimes this can decrease total team perfor-
mance [17].

This paper focuses on the class of static estimation (SE)
DCEE algorithms. The k=1 SE-Optimistic algorithm allows
a single agent to change variable(s) per neighborhood. For
instance, in Figure 1, if agent 2 changes its variable setting,
agents 1 and 3 must remain fixed. Alternatively, if agent 1
changes its variable, agent 2 must remain fixed, but agent
3 could choose to change. The algorithm is optimistic in
the sense that it estimates that it will receive the maximum
reward on every constraint if it picks an unexplored config-
uration. This results in the behavior that 1) every agent
wishes to change configurations on every round, 2) the algo-
rithm will always be exploring the environment (practically
speaking, since our domain premise is that there are too
many configurations to exhaustively cover during the given
time frame), and 3) agents with the worst performance per
neighborhood will be allowed to explore. On every round,
every agent will measure the reward between itself and all of
its neighbors. It will then use Algorithm 1 to decide which
agent (per neighborhood) can choose a new assignment.
getMaxGainAndAssignment is a function that returns a

variable assignment that maximizes the difference between
total expected reward across all binary constraints of the
agent and its current reward. For the case of SE-Optimistic
algorithms, this will always be an unexplored position, be-
cause the agents are optimistic that such positions will have
a very high potential reward. In this manner, for each neigh-

Algorithm 1 K-1 Algorithm Pseudocode

for each neighbor i do
Send variable assignment, reward matrices to i
Receive variable assignment, reward matrices from i

end for
g, a← getMaxGainAndAssignment()
Send Bid g to all neighbors
Receive Bids from all neighbors
G← max(Bids)
if g > G then

UpdateAssignment(a)
end if

borhood, the agent with the worst performance across its
binary constraints with neighbors will get to change.

For the k=2 SE-Optimistic algorithm, each neighborhood
can allow up to two agents performing joint movement to
change configurations (see Algorithm 2). Being an opti-
mistic algorithm, it again assumes that any unexplored bi-
nary constraint will yield the maximum reward. Communi-
cation is more involved as the agents must first look around
their neighborhood to see with whom they will likely make
the strongest bidding pair (by assuming that the neighbor’s
neighbors would not change while evaluating the combined
rewards). Each agent then sends an OfferPair message to
their prospective partner, and those pairs that successfully
match each other as the best in their vicinity will use that
projected gain to compete with their respective neighbors’
bids. Should an agent not get a reply from her desired part-
ner, though, she would have to evaluate her potential reward
as would an agent in the k=1 scenario, then bid using that
value.

2.3 Reinforcement Learning
The second approach we investigate in this paper is Rein-

forcement Learning. Reinforcement learning (RL) [16] is a
machine learning paradigm that is aimed at learning (near-
) optimal agent behavior through interactions with an en-
vironment. This environment is typically formulated as a
Markov decision process (MDP), which is a tuple 〈S,A, T,R〉,
where S is the set of possible states of the environment,
A the possible actions, T the dynamics of the environment
(specified as state transition probabilities), andR the reward
function (which attributes a utility to state transitions).

2.3.1 SARSA
One popular RL algorithm is SARSA [13]. It is a model-

free method that estimates an action-value function, Q(s, a),
measuring the expected return of taking action a in state s
from experience. After each state transition, it updates its
estimates according to:

Q(st, at)← Q(st, at) + α [rt + γQ(st+1, at+1)−Q(st, at)]

rt represents the reward at time t for transitioning from
state st to st+1. at is the action that caused that transition,
and at+1 is the action that will be taken in state st+1. Under
certain conditions [15], these Q-value estimates converge to
the true Q-values in the limit, and an optimal policy can be
followed by taking the action with the highest Q-value in
every state.

The problem considered in this paper is a multiagent sys-

Algorithm 2 K-2 Algorithm Pseudocode

for each neighbor i do
Send variable assignment, reward matrices to i
Receive variable assignment, reward matrices from i

end for

g, p, a← getMaxGainAndAssignmentForPair()
Send OfferPair to agent p

doPair← False
for all OfferPair received do

if agent requesting to pair is p then
Send Accept to agent p

doPair← True
end if

end for
Attempt to receive Accept message
if (not received Accept message from p)
or (not doPair) then

p← ∅
g, a← getMaxGainAndAssignment()

end if
Send Bid(g,p) to all neighbors
Receive Bids from neighbors except p
G← max(Bids)
if g > G then

changing ← True
else

changing ← False
if p 6= ∅ then
Send ProhibitVariableChange to p

end if
end if
Receive messages from neighbors
if changing and p 6= ∅ then

if received ProhibitVariableChange from p then
changing ← False

end if
end if
if changing then UpdateAssignment(a)
end if

tem, and thus the agents will be learning in the presence of
other agents. This renders the problem non-stationary for
learning agents that do not coordinate or take each other
into account, and proofs guaranteeing convergence to the
optimal policy of single-agent algorithms are invalidated.
Still, independent learners often perform well, notwithstand-
ing their lack of coordination [4], and therefore we will take
this approach, keeping the algorithm as simple as possible.

2.3.2 Tile Coding
SARSA, and other temporal difference methods, are often

implemented with look-up tables for the Q-values. However,
when applying these algorithms to problems with large state
and action spaces, or even continuous ones, memory require-
ments become an issue. Furthermore, an agent would need
to visit every state-action pair multiple times to account
for a potentially stochastic environment. Therefore, gener-
alization techniques are a necessity. Tile Coding [2, 16] is
one form of function approximation where the state-space is
partitioned multiple times, i.e., into multiple tilings. Each
tiling divides the space into a number of disjoint sets, or tiles,

and when a state is visited, it is mapped to exactly one tile
in each tiling. Instead of directly estimating the Q-value of
each state s and action a, the Q-function is decomposed into
a sum of weights for each tile:

Q(s, a) =

n∑
i=1

bi(s, a)wi

where n is the number of tiles and bi is 1 or 0, depending
on whether the tile is activated by state s and action a.
Whenever a regular Q-value update would be executed, the
weight of each activated tile is updated instead. Mapping
states to different tilings and decomposing the Q-function
into a linear combination of tilings allows the generalization
of experience between states that are similar. The more tiles
two states share, the more generalization will occur.

3. EXPERIMENTAL SETUP
This section introduces the traffic simulator used in exper-

iments. It also details the setup used for DCEE and SARSA
experiments.

3.1 The AIM Simulator
The Autonomous Intersection Management (AIM) simu-

lator is developed by the Learning Agents Research Group
at the University of Texas at Austin. A microscopic traf-
fic simulator, AIM mainly supports a Manhattan topology
of North-South and East-West multi-lane roads joined by a
number of intersections. The primary vision of this project
is to investigate a future where autonomous vehicles and
intelligent traffic intersections would eliminate the need for
traffic lights altogether. As part of their benchmark, how-
ever, the team has also implemented ordinary traffic lights
into the system. For the purpose of our study, we made ex-
clusive use of this benchmark feature as the backdrop against
which traffic lights will be tested. Even though the traffic-
light system in AIM is implemented using the same message-
passing foundation, the inherited efficiency in which vehicles
navigate an intersection, accelerate, and decelerate, as well
as subtle details including variable vehicle sizes, have con-
vinced us that this is an attractive simulator for our purpose.
Figure 2 shows a screenshot of a 2× 2 intersection setup in
the AIM simulator.

Our setup involves single-lane two-way streets forming a
2× 2 matrix of four intersections. Thus, each road has two
spawn points where new vehicles can enter the system. Each
spawn point uses a Poisson process to determine the spawn
time for the next vehicles; all spawn points share the same
rate parameter, λ. Because each direction has one lane, a
newly spawned vehicle will not pass other cars, nor does it
perform U-turns. Upon creation, each vehicle is assigned a
destination, uniformly chosen among the seven possible exit
points of the system; the vehicle then follows the shortest
path to reach its designated exit point.

3.2 DCEE Experiments
In the setup for the DCEE experiments, we make use of

a special traffic light signal scheme that relies on the AIM
simulator’s definition of an “active phase.” Two parameters
specify precisely such an active phase: the green offset and
green duration in seconds (see Figure 3). For simplicity, the
majority of our experiments will have the active phase length
fixed at 60 seconds. We then associate each intersection

Figure 2: A screenshot of a four-intersection layout
in AIM with two-way single-lane traffic.

Figure 3: Traffic light configuration that makes up
an “active phase” in the simulator.

with a DCEE agent, letting each agent control exactly one
variable — its signal scheme index. This index enumerates
all possible traffic signal configurations, running from 0 to 65
(see Figure 4). Thus, index 0 maps to the tuple (0, 5), which
is an active phase with no leading red, and five seconds of
green time (followed by two seconds of yellow and 53 seconds
of red). To translate the next index, we attempt to increase
green time by a five-second interval, while keeping the total
active phase length. Should this not be possible, we instead
increase the offset by five seconds, and reset green time to
five seconds. This results in a triangular translation table,
stopping at (55,5), for a total of 66 possible combinations.

Once the “active phase” has been determined, the entire
signal layout for each direction (North-South, East-West)
will be specified as shown in Figure 5. Note that at any mo-
ment, only one direction is considered to be active (running
the active phase signal scheme), and the other direction is
inactive, running the complementary signal scheme.

Agents evaluate the rewards of binary constraints with a
neighbor by measuring the average travel time of a fixed
number of cars traveling on the stretch of road connecting
two agents. The total team reward at each round is then
the weighted average of this average travel time, scaled by
the volume of traffic on each stretch of road linking a pair
of agents. For our static estimation agents, we set the un-
explored reward to be 0 seconds, an unattainable value for

Figure 4: The signal scheme index for each
DCEE agent, and its corresponding (green offset,
green time) value, when active phase length is fixed
at 60 seconds. Note that green offset and green time
increase at five-second intervals.

Figure 5: The full signal scheme for an intersection,
dependent on a given active phase. From left to
right is the direction of time: the calculated active
phase is active for North-South in the first 60 sec-
onds, before switching to East-West in the next 60
seconds. The whole signal scheme repeats after 120
seconds total.

travel time. To allow numerically higher reward value to be
more desirable, we negate the actual measurements. Aver-
age travel time serves as a reasonable metric to optimize, as
it correlates with other commonly used metrics that gauge
traffic light performance, such as queue length and through-
put. Thus, by letting the agents optimize for higher rewards
in this context, we are letting the intersections work toward
lower average travel time along the lanes between them, thus
improving traffic light performance. After the agents have
changed their signal schemes, we allocate a cool-down period
of 600 seconds to allow the effect of the new signal schemes
to have an impact on the traffic condition. Only after this
cool-down period do the agents begin to evaluate rewards.

3.3 SARSA Experiments
We apply SARSA with tile coding to the traffic light prob-

lem by giving control of each intersection to a SARSA agent.
The SARSA setup is as follows:

Every two seconds, the agents are presented with only two
possible actions:

1. Do nothing, or

2. Change the green light to the other direction (e.g.,
from North-South to East-West).

Note that when changing the lights, a short period of yel-
low occurs, stopping traffic in all directions.1

The state space is made up of three variables:

1. The number of seconds since the most recent light
change.

1In preliminary experiments, we had not implemented the
yellow light. Because the AIM simulation does not allow
cars to crash into each other, the learned (and also optimal)
policy kept switching the green light between the different
directions very quickly, allowing cars traveling North-South
into the intersection at the same time as cars traveling East-
West!

2. The number of seconds since the second-to-last light
change.

3. The ratio between the accumulated waiting times in
both directions.

The first variable ensures that the agents will be able to
learn a repeated schedule of fixed length. The inclusion of
the second state variable allows the agents to learn asym-
metrical schedules, which are useful when the traffic load is
higher in one direction than in the other. The third state
variable allows the agent to adapt to the slight variations
that occur in the general traffic pattern, by conditioning
learning on the traffic load in each direction. This traffic
load is measured by counting the time each car has lost
when approaching the intersection (actual time - optimal
time at maximum speed allowed), summed over all the cars.
Technically, the variable is a bit more than simply the ratio.
We define waitgreen to be the accumulated waiting time for
all cars in the green direction, and waitred to be the accu-
mulated waiting time for all cars in the red direction. While

a single ratio
waitgreen
waitred

behaves as needed when waitgreen is

larger than waitred, for all combinations where waitred is
larger, values are ∈ (0, 1). This asymmetry makes a simple
ratio not suited for linear tile-coding, and having two vari-

ables (
waitgreen
waitred

and waitred
waitgreen

) would address this problem,

but increases the size of the state space unnecessarily, as we
can encode this information in one variable (see Algorithm
3).

Algorithm 3 Calculating the ratio between accumulated
waiting times in both directions

if waitgreen > waitred then

var3 = log(
waitgreen
waitred

)

else
var3 = −log(waitred

waitgreen
)

end if

If we ensure that waitgreen and waitred are at least one,
then var3 will be 0 when accumulated waiting times in both
directions are exactly the same, and positive or negative
when the waiting time is greater in the direction that has
green or red light respectively. This ensures that, as opposed
to using a simple ratio, this variable is symmetric around 0
and allows easy generalization around 0 with linear tile cod-
ing. The logarithm captures small differences in traffic when
the load is very similar in both directions, while compressing
the differences when the traffic is asymmetric. Tile size is
100 for the first two variables, and 1 for the third variable;
32 tilings are used over the three variables.

Note that including this accumulated waiting time is not
unrealistic. Modern road infrastructures include cameras
and other sensors that are able to keep track of the traffic.
Furthermore, the use of floating car data is increasing. This
is a method used to calculate traffic speed based on signals
from cellular and GPS devices in cars, providing real-time
information on traffic.

The reward that agents receive is the negation of the total
accumulated waiting time for all cars approaching their in-
tersection. Maximizing this reward will reduce the average
waiting time. Although the aim in the traffic problem is to
optimize the whole traffic system, the reward agents receive

is only local. Calculating the global reward by broadcast-
ing the local rewards is costly, and furthermore, employing
global reward introduces a credit assignment problem: was
the change in reward the effect of my own action, or that of
another agent. This may in fact decrease team performance
[5].

The action-selection strategy used is ε-greedy: when an
action must be selected in state s, the action with the highest
estimated Q-value is selected with probability 1 − ε, and
with probability ε a different action is randomly selected.
Furthermore, ε is decreased over time (ε = 0.9998t, t the t-
th decision step, which occurs every 2 seconds), to increase
exploitation of the acquired knowledge. The discounting
factor γ, as well as the replacing eligibility traces’ decay λ,
is set to 0.9, .

3.4 Remarks
The setup for the DCEE and RL approaches differs. First,

their action spaces are different. Second, RL incorporates
state which DCEE does not. Third, DCEE algorithms can
choose among 60s long schedules, while the RL approach
involves decisions every 2s. Direct comparisons between the
approaches’s action selection will be inexact. However, it
is not our purpose to evaluate these algorithms in that re-
spect, but rather, for each approach we chose the most fitting
setup for the traffic problem, and want to compare these al-
gorithms’ performance at their best. The DCEE setup is
built to quickly learn good policies matching the general
traffic pattern, while the RL setup is built to help SARSA
adapt to the general traffic pattern, as well as to short-term
variations in the pattern, which requires more experience.

4. RESULTS
This section describes the empirical comparison between

SARSA and the DCEE algorithms described in previous sec-
tions. We run the simulator with a 2 × 2 grid for 90, 000
seconds, in which we measure the agents’ performance in
terms of the average delay per car and the total throughput.
These metrics are the two most important measures used by
engineers to compare control policies. While throughput in-
dicates how many cars a system can process in a given time
period, average delay gives an indication of how the sys-
tem’s performance affects individual cars’ travel time. As
we will see in the experiments, different control policies can
have approximately the same throughput, yet with largely
differing delays.

Before the agents are allowed to learn, we implemented
a 7, 500 second warm-up period, in which the agents are
forced to select random actions, to allow the system to fill
with cars and reach an equilibrium. This warm-up period is
not graphed in the figures.

We will evaluate two settings with different traffic loads.
The first experiment will be parametrized to generate an av-
erage of 10 cars per minute, per entry link. In the second
experiment, an average of 30 cars will be generated each
minute, a much higher traffic level. Figures 6 and 7 visual-
ize the performance of SARSA, K1 and K2, as well as two
control algorithms (random RL and random DCEE, i.e., the
RL and DCEE setups but with random action-selection) on
the low traffic setting. Experiments are averaged over 100
runs for statistical significance, and errorbars show one stan-
dard deviation. We can see that the situation described be-
fore occurs in this low-traffic setting. It is not necessary

0 1 2 3 4 5 6 7 8 9
x 104

4

6

8

10

12

14

16

18

Time

Av
er

ag
e

de
la

y

Average delay for low traffic conditions

Random RL
SARSA
Random DCEE
K1
K2

Figure 6: Average delay for a low traffic level (10
cars spawned per minute at each entrance).

0 1 2 3 4 5 6 7 8 9
x 104

1.07

1.075

1.08

1.085

1.09

1.095

1.1

1.105

1.11

1.115

1.12

Time

Th
ro

ug
hp

ut

Throughput for low traffic conditions

Random RL
SARSA
Random DCEE
K1
K2

Figure 7: Throughput for a low traffic level (10 cars
spawned per minute at each entrance).

to optimize the throughput of cars in this system as there
are so few of them, but the algorithms can clearly improve
the average delay. Notably, SARSA performs much better
than K1 and K2, as it is not limited to the (too long for
low traffic) 60 second schedules, but incorporates the actual
traffic situation in its state, and adapts to that. K1 can only
approach the level of random RL, while K2 performs even
worse than K1, even though it coordinates more. This ap-
parent discrepancy is due to a phenomenon coined the team
uncertainty penalty [17], in which agents with few neighbors
actually achieve higher performance with lower levels of co-
ordination (e.g., K1), while agents with many neighbors can
achieve higher performance with higher levels of coordina-
tion (e.g., K2).

Let us now consider the higher traffic setting experiment,
visualized in Figures 8 and 9. Both throughput and av-
erage delay can be greatly improved upon in this setting.
SARSA starts with very poor performance for both mea-
sures compared to DCEE algorithms, but is able to learn a
great deal, and in the end it outperforms both DCEE algo-
rithms as these are stateless and can not adapt to the local,
ephemeral fluctuations in the traffic pattern. The power of
the DCEE framework is demonstrated by the performance
of K1 and K2 as measured by average delay. Between two
adjacent changes in signal schemes, the agents spend 600

0 1 2 3 4 5 6 7 8 9
x 104

38

40

42

44

46

48

50

52

54

56

Time

Av
er

ag
e

de
la

y

Average delay for high traffic conditions

Random RL
SARSA
Random DCEE
K1
K2

Figure 8: Average delay for a high traffic level (30
cars spawned per minute at each entrance)

0 1 2 3 4 5 6 7 8 9
x 104

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Time

Th
ro

ug
hp

ut

Throughput for high traffic conditions

Random RL
SARSA
Random DCEE
K1
K2

Figure 9: Throughput for a high traffic level (30 cars
spawned per minute at each entrance)

seconds for the cool-down period, and about 600 seconds
for collecting data to measure average travel times. Thus,
they are both able to significantly optimize the traffic flow of
the system in only eight decision steps (around the 10, 000
second mark), with 664 = 1.9 × 107 possible schedule com-
binations to choose from. Furthermore, throughput is only
slightly improved as it already is at a near-optimal level for
any possible schedule, yet SARSA is again able to outper-
form the DCEE algorithms in the long run. Lastly, it is
interesting to note that in both experiments, SARSA first
decreases its performance as compared to random, before it
is able to improve again.

5. DISCUSSION
The results described in the previous section show that

the DCEE algorithms are particularly well suited at quickly
finding good solutions, while the RL approach proved to
be more adaptive in the long run. Besides showing that
more coordination can be detrimental to performance, the
results suggest we try giving the DCEE algorithms the op-
tion to choose schedules with varying lengths, to make better
adaptation to the traffic level possible. For example, shorter
schedules can be beneficial in low traffic conditions. Figures
10 and 11 show the delay and throughput for K1 choosing
from various 60 second schedules as before, and K1 choos-

0 1 2 3 4 5 6 7 8 9
x 104

38

40

42

44

46

48

50

52

54

56

Time

Av
er

ag
e

de
la

y

DCEE with fixed versus variable schedule length. Average delay

K1 with fixed schedule length
K1 with variable schedule length

Figure 10: This graph shows the average delay for a
high traffic level, comparing K1 with fixed 60 second
schedules and K1 with variable length schedules.

0 1 2 3 4 5 6 7 8 9
x 104

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78

Time

Th
ro

ug
hp

ut

DCEE with fixed versus variable schedule length. Throughput

K1 with fixed schedule length
K1 with variable schedule length

Figure 11: This graph shows the throughput for a
high traffic level, comparing K1 with fixed 60 second
schedules and K1 with variable length schedules.

ing from a larger range of schedules with lengths varying
from 10 seconds to 100 seconds. It is clear from the graphs
that randomly choosing among the much larger number of
schedules (16, 370 available signal scheme choices instead of
only 66) yields worse performance, as indicated by the rel-
ative initial performance levels. K1 shows more learning
for the variable schedules, but does not converge to perfor-
mance as good as that with more limited options. Still, it
also converges after only eight decision steps (one every 1200
seconds), and reaches impressive performance given the huge
number of possible combinations 163704 = 7.18×1016). One
possible reason why the variable phase length version never
quite converges to the same performance level as that of the
fixed version is due to the large number of nonoptimal signal
schemes. Since the agents choose new positions to explore
randomly, they are more likely to encounter solutions that
are not as good as those found by restricting to a 60 second
active phase length. However, it should be the case that the
best performance reached by the former is higher than that
by the latter.

6. CONCLUSIONS AND FUTURE WORK
The DCEE framework was specifically developed to ad-

dress real-world situations where problems need to be solved
in a distributed way, and on-line performance must quickly
reach high quality. This forces the solvers to strike a tight
balance between exploring new actions and exploiting known
good actions. In this paper, we applied DCEE algorithms to
the problem of coordinating traffic light control, and showed
that, compared to an algorithm from the popular Reinforce-
ment Learning (RL) approach, they are able to very quickly
achieve a large improvement in performance. Also, our pre-
vious results concerning the team uncertainty penalty are
confirmed in this setting [17], showing again that more co-
ordination among agents is not necessarily beneficial.

The main advantage of the RL approach used in this pa-
per is its ability to incorporate relevant state-information
that allows the agent to better adapt to the problem. This
allowed SARSA to outperform the DCEE algorithms, al-
though requiring much more experience to reach a similar
quality of performance.

Future work will extend this work in several ways. First,
we are currently implementing isolated traffic signal opti-
mization, a benchmark used by civil engineers that involves
analytically calculating traffic schedules based on given traf-
fic flow levels. Second, we intend to implement the work
from [9], which can be considered to be the state-of-the art
RL approach. Benchmarking our current algorithms against
these two new ones will allow us to better evaluate the im-
portance of coordination, showing how far off the perfor-
mance of our current approaches is from that of idealized
controllers, and potentially inspire further multiagent learn-
ing algorithms. Third, we plan to implement more advanced
DCEE algorithms, in particular the Balanced Exploration
family, which should enable better exploitation behaviors.
Fourth, we are investigating a multi-objective optimization
approach, in order to optimize both delay and throughput
metrics simultaneously. Recent work on multi-objective re-
inforcement learning is promising for this [19].

7. ACKNOWLEDGMENTS
Tim Brys is funded by a Ph.D grant of the Research

Foundation-Flanders (FWO), and performed a research visit
to Prof. Matthew E. Taylor at Lafayette College, funded by
a Short Stay Abroad grant also from the FWO. This work
was supported in part by NSF IIS-1149917.

8. REFERENCES
[1] B. Abdulhai, R. Pringle, and G. Karakoulas.

Reinforcement learning for true adaptive traffic signal
control. Journal of Transportation Engineering,
129(3):278–285, 2003.

[2] J. Albus. Brains, behavior and robotics. McGraw-Hill,
Inc., 1981.

[3] B. Bakker, M. Steingrover, R. Schouten, E. Nijhuis,
and L. Kester. Cooperative multi-agent reinforcement
learning of traffic lights. In Proceedings of the
Workshop on Cooperative Multi-Agent Learning,
European Conference on Machine Learning, ECML,
volume 5, page 65, 2005.

[4] L. Busoniu, R. Babuska, and B. De Schutter. A
comprehensive survey of multiagent reinforcement
learning. Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on,
38(2):156–172, 2008.

[5] Y.-H. Chang, T. Ho, and L. P. Kaelbling. All learning
is local: Multi-agent learning in global reward games.
In S. Thrun, L. Saul, and B. Schölkopf, editors,
Advances in Neural Information Processing Systems
16, Cambridge, MA, 2004. MIT Press.

[6] N. T. O. Coalition. National traffic signal report card,
executive summary.
http://www.ite.org/reportcard/ExecSummary.pdf,
2012.

[7] K. Dresner and P. Stone. A multiagent approach to
autonomous intersection management. Journal of
Artificial Intelligence Research, 31:591–656, Mar. 2008.

[8] R. Junges and A. Bazzan. Evaluating the performance
of dcop algorithms in a real world, dynamic problem.
In Proceedings of the 7th international joint conference
on Autonomous agents and multiagent systems-Volume
2, pages 599–606. International Foundation for
Autonomous Agents and Multiagent Systems, 2008.

[9] L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis.
Multiagent reinforcement learning for urban traffic
control using coordination graphs. Machine Learning
and Knowledge Discovery in Databases, pages
656–671, 2008.

[10] Z. Liu. A survey of intelligence methods in urban
traffic signal control. IJCSNS International Journal of
Computer Science and Network Security,
7(7):105–112, 2007.

[11] P. Mirchandani and F.-Y. Wang. Rhodes to intelligent
transportation systems. Intelligent Systems, IEEE,
20(1):10 – 15, jan.-feb. 2005.

[12] D. Robertson and R. Bretherton. Optimizing networks
of traffic signals in real time-the scoot method.
Vehicular Technology, IEEE Transactions on, 40(1):11
–15, feb 1991.

[13] G. Rummery and M. Niranjan. On-line Q-learning
using connectionist systems. University of Cambridge,
Department of Engineering, 1994.

[14] M. Shoufeng, L. Ying, and L. Bao. Agent-based
learning control method for urban traffic signal of
single intersection. Journal of Systems Engineering,
17(6):526–530, 2002.

[15] S. Singh, T. Jaakkola, M. Littman, and C. Szepesvári.
Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine Learning,
38(3):287–308, 2000.

[16] R. Sutton and A. Barto. Reinforcement learning: An
introduction, volume 1. Cambridge Univ Press, 1998.

[17] M. E. Taylor, M. Jain, P. Tandon, M. Yokoo, and
M. Tambe. : Distributed on-line multi-agent
optimization under uncertainty: Balancing exploration
and exploitation. Advances in Complex Systems
(ACS) 14(03), pages 471–528, 2011.

[18] T. Thorpe and C. Andersson. Vehicle traffic light
control using sarsa. 1997.

[19] K. Van Moffaert, M. M. Drugan, and A. Nowé.
Scalarized multi-objective reinforcement learning:
Novel design techniques. In Proceedings of the IEEE
Symposium on Adaptive Dynamic Programming and
Reinforcement Learning. IEEE, 2013.

