
Help an Agent Out:
Student/Teacher Learning in Sequential Decision Tasks

Lisa Torrey
St. Lawrence University

ltorrey@stlawu.edu

Matthew E. Taylor
Lafayette College

taylorm@lafayette.edu

ABSTRACT

Research on agents has led to the development of algorithms for

learning from experience, accepting guidance from humans, and

imitating experts. This paper explores a new direction for agents:

the ability to teach other agents. In particular, we focus on sit-

uations where the teacher has limited expertise and instructs the

student through action advice. The paper proposes and evaluates

several teaching algorithms based on providing advice at a gradu-

ally decreasing rate. A crucial component of these algorithms is

the ability of an agent to estimate its confidence in a state. We also

contribute a student/teacher framework for implementing teaching

strategies, which we hope will spur additional development in this

relatively unexplored area.

Categories and Subject Descriptors

I.2.6 [Learning]: Miscellaneous

General Terms

Algorithms, Performance

Keywords

Reinforcement Learning, Inter-agent teaching, Transfer Learning

1. INTRODUCTION
Agents are becoming increasingly common in industry, educa-

tion, and domestic environments. Significant advances have been

made in autonomous learning and learning with human guidance.

However, less attention has been paid to the question of how agents

could best teach each other. For instance, an existing robot in a fac-

tory should be able to instruct a newly arriving robot, even if it is

from a different manufacturer, has a different knowledge represen-

tation, or is not optimal itself.

This paper investigates a variety of teaching methods in sequen-

tial decision tasks. In particular, we consider a reinforcement learn-

ing student that must learn from autonomous exploration of the en-

vironment under the guidance of another agent. In order to min-

imize inter-operability requirements, the teacher and student are

presumed not to know each others’ internal workings; teachers can

only help students by suggesting actions. Furthermore, the teacher

may have limited expertise in the student’s task, so it should be

careful not to over-advise the student. The primary question we

address is: how should the teacher decide when to give advice?

The teaching context is related to the more well-studied problem

of transfer learning [16, 17, 18], in which an agent uses knowledge

from a source task to aid its learning in a target task. However,

transfer algorithms often assume that agents can directly access the

internal knowledge representation from the source task, which is

too strong an assumption to make in teaching.

Another related area is learning from experts [4, 12], where agents

may imitate experts or ask for their advice. This setting puts the stu-

dent in charge of the process; our work gives more control to the

teacher, because the teacher is the agent with more initial knowl-

edge. Our setting also focuses on non-expert teachers whose knowl-

edge may not be complete.

We introduce a family of teaching methods and conduct a set

of experiments to evaluate and compare them. Experiments take

place in both discrete and continuous tasks, and with varying levels

of teacher expertise.

Empirical results from this study highlight a number of insights

into inter-agent teaching. First, teachers can make better decisions

about when to give advice if they are able to judge their own con-

fidence in their knowledge. Second, teachers can also make better

decisions if they are able to ask about the student’s confidence and

compare it to their own. Third, there are multiple factors that af-

fect the relative performance of different teaching algorithms: the

domain, the teacher’s level of expertise, and even the student’s ex-

ploration strategy.

The primary contributions of this paper are to suggest effective

algorithms for teaching, to highlight interesting empirical obser-

vations, and to provide an open-source framework for evaluating

teaching methods. Our hope is that this paper enables and inspires

the agents community to develop further methods by which agents

can teach other agents.

2. BACKGROUND AND RELATED WORK
This section provides a summary of important background infor-

mation, and a survey of existing work in relevant areas.

2.1 Reinforcement Learning
This paper focuses on reinforcement learning (RL), a popular

formulation for sequential decision tasks [7, 14]. RL tasks are typi-

cally framed as Markov decision processes (MDPs) and defined by

the 4-tuple of state set, action set, transition function, and reward

function: {S,A, T,R}. A learner chooses which action to take in a

state via a policy, π : S 7→ A, which is modified over time. A bet-

ter policy gives the learner better performance, which is defined as

the expected (discounted) total reward. To learn an optimal policy,

agents need to balance exploration and exploitation.

Many RL algorithms are based on building an action-value func-

tion, Q : S × A 7→ R, which maps state-action pairs to their ex-

pected return. In large or continuous state spaces, agents typically

factor the state into features: s = 〈x1, x2, . . . , xn〉. In such cases,

RL methods typically use function approximation to represent the

Q-function, which produces state space abstraction.

2.2 Humans Teaching Agents
Some methods for humans teaching agents are relevant to the

current work. For instance, Learning from Demonstration (LfD) [2]

includes a broad category of work that focuses on agents learn-

ing to mimic a human demonstrator. Much of the existing LfD

research focuses on compensating for variance/errors in actions

demonstrated by humans and determining where the estimate of

the human action is accurate. LfD methods are naturally centered

on the student, whereas the current work centers on a (non-human)

teacher.

Inverse reinforcement learning [1] is another increasingly popu-

lar paradigm. In this setting, an agent must act in an MDP without

a reward signal. The agent observes a human, tries to infer the hu-

man’s reward function, and then maximizes this function. In con-

trast, in this work we assume the MDP does have a reward signal,

and we do not assume that the student will do best by imitating the

teacher.

There is a wide range of other work on providing human help

to an agent, such as giving high-level programmatic advice [10].

These methods may inform future work with agent teachers, but

they would require teachers and students to be able to communicate

more than just immediate action advice.

2.3 Agents Teaching Agents
In transfer learning (TL), an agent uses knowledge from a source

task to aid its learning in a target task [16, 17, 18]. Often, the agent

is allowed to copy source-task knowledge directly, and then con-

tinues to learn from that starting point. In contrast, this work as-

sumes that a student agent cannot directly transfer all knowledge

completely and immediately from its teacher, because their inter-

nal knowledge representations are not known a priori, or are even

incompatible.

Probabilistic policy reuse (PPR) is a TL technique in which the

agent uses a transferred policy with probability ψ, explores with

probability ǫ, and exploits the current policy with probability 1 −
ψ − ǫ [5, 6]. By decaying ψ over time, the agent can initially

leverage transferred knowledge, and then learn to improve upon it.

The PPR framework will be used later in this paper for balancing

the need to exploit the teacher’s knowledge with the need for the

student to learn autonomously.

Ask For Help is a method for agents to learn from other expert

agents [3, 4]. In this system, an agent asks for advice when its

confidence in a state is low. Our work builds upon the idea of mak-

ing decisions based upon confidence in a state, but we consider the

teacher’s confidence as well as the student’s. Another difference is

that we have the teacher make the advice decisions, since it is more

knowledgeable than the student.

Experience replay [9] has been successfully used to share recorded

experiences between agents in Q-Learning and in batch reinforce-

ment settings [8], but it requires the teacher to store experience

samples, and the student must have an identical state representa-

tion. Tan [15] extends this idea, allowing agents to share episodes

and entire policies, but is also restricted to Q-learning agents with

identical representations.

Learning by watching [19] is another example of experience shar-

ing, improved upon by imitation learning, which allows agents to

have different action sets but still requires them to have the same

state representation [12].

Others, including Nunes and Oliveira [11], have considered groups

of agents simultaneously learning in a single environment, where

agents share experience among themselves. In contrast, this work

focuses on teaching rather than cooperative learning.

3. METHODS
Our goal in this paper is to explore ways that agent teachers can

help agent students to learn sequential decision tasks. A core as-

sumption is that agents cannot necessarily understand each others’

internal workings and thus are limited to teaching via communica-

tion, rather than other forms of knowledge transfer (e.g., directly

copying a Q-function). This, of course, is the case when humans

teach each other as well.

Humans often teach skills by guiding students’ actions com-

pletely at first, then reducing guidance gradually as students be-

come more capable. We propose a similar approach for agent teach-

ers, and we begin by applying Probabilistic Policy Reuse [5, 6].

PPR allows an agent to learn a task faster by taking advantage

of an existing policy. The PPR method, described in Algorithm 1,

changes only the action selection step of the learning process. With

probability ψ, the agent exploits an old policy; the rest of the time,

it uses normal ǫ-greedy action selection. The value of ψ decays

over time according to a decay rate v so that the agent makes less

use of old policies as it improves its own.

Method 1 Probabilistic Policy Reuse: learning a new policy with

assistance from an old policy

1: Load old policy πold

2: Initialize new policy πnew

3: Set ψ = 1
4: for each training episode do

5: for each state s do

6: if random(0,1) < ψ then

7: Take action πold(s)
8: else if random(0,1) < ǫ then

9: Take a random action

10: else

11: Take action πnew(s)
12: end if

13: Update policy

14: end for

15: Decay ψ = ψv
16: end for

PPR has some good characteristics for teaching. It allows a

teacher to give advice frequently at first and less frequently over

time. However, recall another core assumption we make: teach-

ers do not always have complete expertise. They may have more

knowledge in some states than others and could even have some

incorrect knowledge. This can also be true in human teaching as

well, though we may be less likely to admit it.

For a teacher with limited expertise, PPR may not be the op-

timal teaching algorithm. A PPR teacher provides action advice

with a global probability ψ that is uniform across all states. If the

teacher is more confident in some states than others, it makes more

sense for advice probabilities to be higher in some states than oth-

ers. We therefore propose several new algorithms that use teacher

confidence to make advice probabilities state-specific.

We will consider the student’s confidence eventually as well.

However, we focus first on the teacher’s confidence, because of

the issue of limited expertise.

3.1 Measuring Confidence
To support these new algorithms, we need a way to estimate an

agent’s confidence in a state. A common approach to this prob-

lem is Q-value interval estimation, where confidence is measured

by the difference between the highest and lowest Q-values in a

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300

A
v
e

ra
g

e
 C

o
n

fi
d

e
n

c
e

Thousands of Training Steps

Update Counting
Interval Estimation

Figure 1: This graph shows how an agent’s average confidence

per state changes while learning to navigate a maze, using two

different confidence measures.

state [4]. However, the interval-estimation measure produces coun-

terintuitive results in some domains.

For example, consider an agent learning to navigate a maze. The

agent gains confidence as it first discovers paths to the goal state,

but after a while it begins to lose confidence, as shown in Figure 1.

This is because maze states are highly connected — the true Q-

values of actions in these states are not very different. Interval es-

timation is therefore not a stable confidence measure for maze-like

domains. Since such domains are used in our experiments, we do

not use interval estimation.

Instead, we introduce visit counting, an approach that measures

confidence in terms of the number of times an agent has visited

a state. It is easily implemented in discrete settings by keeping a

table of state visit-counts. When an agent visits a state s, it incre-

ments the visit-count v(s), and its confidence in that state is v(s).
However, the visit-counting approach is also adaptable to contin-

uous settings. For instance, when using tile-coding, we can use

tile visit-counts, rather than state visit-counts. When an agent vis-

its a state with active tiles 〈t1, t2, . . . , tn〉, it increments the tile

visit-counts v(t1), v(t2), ..., v(tn), and its confidence in that state

is
∑

i
v(ti)/n.

However, we note that visiting a state does not always give an

agent more knowledge about it. It seems clear that knowledge is

gained only if the agent makes a non-zero Q-value update. It may

be possible to be even more restrictive than this, depending on the

domain and the learning algorithm. If small negative rewards are

received at each step by default, true knowledge gains may be rep-

resented only by positive Q-value updates. Or, if an agent uses opti-

mistic Q-value initialization, knowledge gains may be represented

only by negative Q-value updates.

We therefore suggest a metric that we label update counting, in

which confidence is measured by the number of times an agent has

made a non-trivial Q-value update in a state. The definition of “non-

trivial” is necessarily domain-dependent and agent-dependent. Up-

date counts extend to continuous settings with tile coding the same

way that visit-counts do. This measure has more intuitive behavior

than interval estimation, as Figure 1 shows.

3.2 State-Specific Probabilities
We now describe several new teaching algorithms that extend

PPR for use with non-expert teachers. These algorithms all make

use of a global probability ψ, but they also use confidence measures

to compute state-specific advice probabilities.

A state-specific advice probability should have several general

properties. First, it should decay over time. Second, it should be

higher in states where the teacher is more confident. Third, teachers

with lower confidence levels should give less advice overall than

teachers with higher confidence levels. Fourth, for high-performing

teachers, the state-specific probabilities should all start to converge

to ψ.

Note that we calculate an advice probability in each state, not

just a binary decision on whether or not to give advice. This allows

the teacher to smoothly decrease its guidance over time, and cleanly

integrates with the PPR framework.

We propose three algorithms that meet these specifications in

different ways. In a state s, a teacher must compute a probability

of giving advice p(s). Let ct(s) represent the teacher’s confidence

in that state.

Our first algorithm computes:

p(s) =

{

0 if ct(s) < 1
ψ if ct(s) ≥ 1

We label this algorithm conditional-PPR, since its advice is con-

ditional upon having at least some confidence. We use the threshold

ct(s) = 1 as the confidence cutoff in order to draw the line clearly

between no knowledge and some knowledge. This approach pro-

vides a simple but logical alternative to PPR that allows a teacher

to avoid giving advice in unfamiliar states. For a teacher who is

confident in all states, this algorithm becomes equivalent to regular

PPR.

Our second algorithm computes:

p(s) =

{

0 if ct(s) < 1

ψ ct(s)+f

max(ct)+f
if ct(s) ≥ 1

Here max(ct) represents the maximum confidence level the teacher

has experienced in any state during its training.

We label this algorithm proportional-PPR, since its advice prob-

ability is proportional to confidence. In states with higher confi-

dence, it gives advice with a higher probability, up to a maximum

of ψ. This approach allows the teacher to scale its level of guidance

more precisely in different states.

The floor parameter f ≥ 0 can be used to shrink the range of

probabilities this function produces. As f increases, the minimum

advice probability for states with non-zero confidence rises. In the

limit, this algorithm becomes equivalent to conditional-PPR.

Our third algorithm computes:

p(s) =

{

0 if ct(s) < 1

min
(

1− cs(s)
ct(s)+d

, ψ
)

if ct(s) ≥ 1

Here cs(s) represents the student’s confidence in state s.
We label this algorithm relative-PPR, since its advice probabil-

ity depends on the relationship between the student’s confidence

and the teacher’s confidence. In states where the teacher has much

higher confidence than the student, it gives advice with a higher

probability, up to a maximum of ψ. As the student’s confidence

in a state grows, the advice probability decreases, and eventually it

stops altogether.

The delay parameter d ≥ 0 can be used to slow down this pro-

cess. As d increases, teachers require students to reach higher lev-

els of confidence before they stop giving advice. In the limit, this

algorithm also becomes equivalent to conditional-PPR.

This approach combines the probability concepts of PPR, the

confidence concepts of Ask-For-Help, and the additional concept of

comparing student and teacher confidence. Of our three algorithms,

it determines advice probabilities in the most sophisticated way.

XXXXXXXXXXXXXXXXXXXX

X XXX X X X

XX X X X X X X X X

X XXX X

X XXX X X XXX

X X X X

X X X XX X

X XX X X X

X XX X X X X

XX X X X X

X X XXXX XX

XX X X X XX

X X X XXXXX

XX X XX XX X XX

XX XXXX X

X X XX XX XX X

X XXX XXXX X

X X X X

XXX X XX @X

XXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX

X XXX X X X

XX X X X X X X X X

X XXX X

X XXX X X XXX

X X X X

X X X XX X

X XX X X X

X XX X X X X

XX X X X X

X X XXXX XX

XX X X X XX

X X X XXXXX

XX X XX XX X XX

XX XXXX X

X X XX XX XX X

X XXX XXXX X

X X X X

XXX X XXOOO @X

XXXXXXXXXXXXXXXXXXXX

Figure 2: This figure shows the maze world (left) and the cliff

world (right). Wall cells are labeled X, cliff cells are labeled O,

and the @ is the goal cell.

4. EVALUATION
To evaluate and compare these teaching algorithms, we perform

teaching experiments in three domains: maze world, cliff world,

and mountain car. The goal in all of these domains is to complete

episodes using a minimum number of steps.

Our maze world comes from the Ask-For-Help work [4]. It is a

20x20 grid in which each open cell is a different state, and the agent

starts in a random state. Actions corresponding to the four cardinal

directions allow the agent to move between cells. The reward func-

tion is 0 for every transition except one in which the agent enters

the goal cell. Reaching the goal ends the episode, and there is no

limit to the number of steps an agent can take.

Our cliff world is identical to the maze world, except that it con-

tains cells that represent pits, arranged in a row like a cliff. If an

agent enters a cliff cell, it gets reset back to its starting position.

Figure 2 shows an illustration of the maze and cliff environments.

Mountain Car is a benchmark RL task, commonly used to test

algorithms in a simple continuous state task [13]. The car starts

near the bottom of the hill with zero velocity, and must drive to the

top of the hill. However, its motor is underpowered, so the car must

build up enough energy to reach the goal by moving back and forth.

Figure 3 shows an illustration of this environment.

States in this domain are described by two continuous features:

the car’s position and velocity. The agent has three actions: accel-

erate in the +x direction, accelerate in the -x direction, or do not

accelerate at all. The transition function is a simple physics sim-

ulation involving position, velocity, acceleration, and gravity. The

car is given a reward of -1 at every step until it reaches the goal lo-

cation. Reaching the goal ends the episode, but there is also a limit

of 1000 steps per episode.

We train agents in these worlds with learning algorithms that

are appropriate to their setting. In the maze world, we use simple

tabular Q-learning. In the cliff world, we use tabular Sarsa, since

the Sarsa variant of Q-learning is better for handling state spaces

where exploration can be extremly costly [14]. In mountain car, we

use Sarsa(λ) with 16 tile codings to handle the continuous features.

In each learning algorithm, we use default parameters for these

domains that produce reasonable learning curves for independent

agents. For the maze and cliff, these are α = 0.15, ǫ = 0.05,

and γ = 0.99. For mountain car, they are α = 0.25, ǫ = 0.05,

γ = 1.0, and λ = 0.25.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

m
o

u
n

ta
in

 h
e

ig
h

t

x

Mountain Car

Start

Goal

Figure 3: This figure shows the traditional mountain car envi-

ronment, where x is the agent’s location.

To produce teachers with limited expertise, we do not allow them

to train until their policies converge. Instead, we train teachers for

only 10, 20, or 30 episodes. In all the domains, we allow teacher

episodes to be as long as necessary for the teacher to reach a goal

state. Otherwise, two teachers who have trained for 10 episodes

could have very different confidence levels, which would be a large

source of unnecessary variability in the experiments.

Each teacher then gives advice to students using the four teach-

ing algorithms we have discussed: regular PPR, conditional-PPR,

proportional-PPR, and relative-PPR. We use the update-count met-

ric for estimating confidence. For the maze and cliff worlds, we

use state visit-counts that are incremented when a visit to a state

produces a non-zero Q-value update. For mountain car, we use tile

visit-counts that are incremented when a visit to a state produces a

positive Q-value update.

Each teaching algorithm also has parameters that must be set.

They all share the decay-rate parameter v; proportional-PPR also

has the floor parameter f and relative-PPR has the delay parame-

ter d. Since appropriate values for these parameters are domain-

dependent, we determine a set of 3 reasonable choices for each

parameter in each domain and select the best of those settings.

To produce smooth learning curves for the students, we average

the performance of 100 students for each experiment. To lend per-

spective to the student learning curves, we also show curves for in-

dependent agents and direct-transfer agents. Independent agents

learn without a teacher, and should therefore learn more slowly

than any student. Direct-transfer agents copy the teacher’s entire

Q-function, and should therefore learn more quickly than all other

students. In fact, because they have direct access to their teacher’s

brains, direct-transfer agents should represent a bound for student

performance.

To compare the algorithms quantitatively as well as visually, we

compute areas under learning curves and perform paired t-tests to

check for significant differences between algorithms.

4.1 Maze World Results
Figures 4, 5, and 6 show how students learn from teachers with

varying levels of expertise in the maze world. As expected, teachers

with more training are more helpful to their students. However, the

PPR algorithm provides some benefits to students at all levels of

training, and our state-specific versions produce similar results.

At the lowest training level, regular PPR is more beneficial than

the rest, and this difference is statistically significant. This result

is surprising, since it means that giving advice in unfamiliar maze

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120 140 160

A
v
e

ra
g

e
 S

te
p

s
 t

o
 G

o
a

l

Thousands of Training Steps

Independent Learning
Regular PPR

Conditional PPR
Proportional PPR

Relative PPR
Direct Transfer

Figure 4: Maze world performance of students whose teachers

had 30 episodes of training

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120 140 160

A
v
e

ra
g

e
 S

te
p

s
 t

o
 G

o
a

l

Thousands of Training Steps

Independent Learning
Regular PPR

Conditional PPR
Proportional PPR

Relative PPR
Direct Transfer

Figure 5: Maze world performance of students whose teachers

had 20 episodes of training

states is somehow helpful. Further inspection reveals that advice

in these states is random, and thus equivalent to exploration. This

changes the student’s exploration rate from constant ǫ to something

correlated with decaying ψ. If we let all the students use ǫ = ψ,

the difference between regular PPR and the other approaches dis-

appears. This indicates that the student’s exploration rate can have

a significant impact on the effectiveness of a teaching algorithm.

We find that reasonable parameter settings in the maze world are

v ∈ {0.9, 0.99, 0.999}, f ∈ {10, 100, 1000}, and d ∈ {0, 10, 100}.

Table 1 shows the best settings for each algorithm. Note that the

floor parameters for proportional-PPR tend to be the higher ones,

which makes that approach comparable to conditional-PPR. This

means a teacher in the maze world does best using even small

amounts of knowledge to their fullest degree. The delay rate d
for relative-PPR is not particularly important; all the choices pro-

duce similar results. This means relative-PPR is not very sensitive

to parameter selection in this domain.

One other important difference between the teaching algorithms

in the maze world is the amount of advice they provide to students.

Table 2 shows the average number of times each algorithm gives

advice while training the students. The state-specific approaches

give drastically less advice than regular PPR. They may therefore

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120 140 160

A
v
e

ra
g

e
 S

te
p

s
 t

o
 G

o
a

l

Thousands of Training Steps

Independent Learning
Regular PPR

Conditional PPR
Proportional PPR

Relative PPR
Direct Transfer

Figure 6: Maze world performance of students whose teachers

had 10 episodes of training

Training = 30 Training = 20 Training = 10

PPR v = 0.99 v = 0.99 v = 0.99
c-PPR v = 0.99 v = 0.999 v = 0.99
p-PPR v, f = 0.999, 100 v, f = 0.99, 1000 v, f = 0.99, 1000
r-PPR v, d = 0.999, 0 v, d = 0.99, 0 v, d = 0.9, 100

Table 1: Best parameter settings in the maze world

be preferable in this domain simply for their advice efficiency.

The maze world contains no critical decision points; there is

no state in which a particular action is crucial to take or avoid.

Teachers can therefore give some non-optimal advice in this do-

main without causing harm. This is the reason that regular PPR

performs comparably to state-specific versions in the maze world.

Our next experiments in the cliff world will tell a different story.

4.2 Cliff World Results
Figures 7, 8, and 9 show how students learn from teachers with

varying levels of expertise in the cliff world. In these experiments,

all of the state-specific algorithms are more beneficial than regular

PPR, and these differences are statistically significant.

The reason for this change is that cliffs make it dangerous to give

advice in unfamiliar states, as is done by regular PPR. States near

cliffs are critical decision points. Some teachers become familiar

with the states near the cliff during their limited training, but others

do not. Our algorithms allow only the confident teachers to give

advice in those states. The more critical decision points are in a

domain, the more superior state-specific approaches should be for

teachers with limited expertise.

Reasonable parameter settings in the cliff world are the same

as in the maze world. Table 3 shows the best settings for each

algorithm. The amounts of advice given by teachers in the cliff

world are shown in Table 4. As in the maze world, the state-specific

approaches give drastically less advice than regular PPR.

Training = 30 Training = 20 Training = 10

PPR 55,728 112,505 209,512
conditional-PPR 1,275 2,025 617
proportional-PPR 2,496 1,121 623
relative-PPR 592 353 225

Table 2: Amounts of advice given by teachers while training

the students in the maze world

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250

A
v
e

ra
g

e
 S

te
p

s
 t

o
 G

o
a

l

Thousands of Training Steps

Independent Learning
Regular PPR

Conditional PPR
Proportional PPR

Relative PPR
Direct Transfer

Figure 7: Cliff world performance of students whose teachers

had 30 episodes of training

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250

A
v
e

ra
g

e
 S

te
p

s
 t

o
 G

o
a

l

Thousands of Training Steps

Independent Learning
Regular PPR

Conditional PPR
Proportional PPR

Relative PPR
Direct Transfer

Figure 8: Cliff world performance of students whose teachers

had 20 episodes of training

4.3 Mountain Car Results
Figures 10, 11, and 12 show how students learn from teachers

with varying levels of expertise in mountain car. In these experi-

ments, conditional-PPR and proportional-PPR produce similar re-

sults to regular PPR. However, relative-PPR is more beneficial, and

these differences are statistically significant.

These results can be best understood by looking at the confi-

dence mechanics in mountain car. Since it is a tile-coding domain,

update counts are assigned to tiles rather than states, and an agent’s

confidence in a state is the average update-count of the state’s ac-

tive tiles. One effect of spreading confidence across tiles is that

confidence tends to grow quickly throughout the state space. Un-

seen states can still receive confidence if their component tiles have

been seen (due to visiting nearby states). It does not take long for

an agent to have at least some confidence in nearly all states.

In this situation, conditional-PPR and proportional-PPR should

approach equivalency with regular PPR, and their performance re-

flects this. Relative-PPR is better equipped to handle these confi-

dence mechanics, because it takes both teacher and student confi-

dence into account. It backs off quickly in states where the student

gains confidence quickly, but keeps giving advice in the less com-

mon states.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250

A
v
e

ra
g

e
 S

te
p

s
 t

o
 G

o
a

l

Thousands of Training Steps

Independent Learning
Regular PPR

Conditional PPR
Proportional PPR

Relative PPR
Direct Transfer

Figure 9: Cliff world performance of students whose teachers

had 10 episodes of training

Training = 30 Training = 20 Training = 10

PPR v = 0.99 v = 0.9 v = 0.9
c-PPR v = 0.99 v = 0.999 v = 0.99
p-PPR v, f = 0.999, 1000 v, f = 0.999, 1000 v, f = 0.999, 1000
r-PPR v, d = 0.999, 0 v, d = 0.999, 100 v, d = 0.99, 10

Table 3: Best parameter settings in the cliff world

We find that reasonable parameter settings in mountain car are

v ∈ {0.99, 0.97, 0.95}, f ∈ {100, 1000, 10000}, and finally d ∈
{10, 100, 1000}. Table 5 shows the best settings for each algo-

rithm. Note that the parameters for relative-PPR are more impor-

tant in this domain; the performance of the approach varies more

than it does in the maze and cliff worlds.

The amounts of advice given by teachers in mountain car are

shown in Table 6. The state-specific approaches use only slightly

less advice than regular PPR. Since teachers tend to have at least

some confidence in nearly all states, they give substantially more

advice.

5. FUTURE WORK AND CONCLUSIONS
The literature on learning agents naturally focuses on algorithms

that agents can use to learn. This paper contributes an initial study

of algorithms that agents can use to teach. It focuses on agents

teaching other agents in sequential decision tasks. We assume a

broadly applicable setting, in which teachers and students interact

through action advice and in which teachers have limited expertise.

This paper contributes a family of teaching methods for advising

students. The algorithms are based on Probabilistic Policy Reuse,

but they use the concept of agent confidence to make advice prob-

abilities state-specific. Empirical results show that state-specific

methods, particularly one that takes both teacher and student confi-

dence levels into account, are effective in the teaching setting.

Training = 30 Training = 20 Training = 10

PPR 53,509 30,489 114,102
conditional-PPR 1,562 2,547 962
proportional-PPR 3,060 2,527 1,664
relative-PPR 728 1,255 416

Table 4: Amounts of advice given by teachers while training

the students in the cliff world

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

A
v
e

ra
g

e
 S

te
p

s
 t

o
 G

o
a

l

Thousands of Training Steps

Independent Learning
Regular PPR

Conditional PPR
Proportional PPR

Relative PPR
Direct Transfer

Figure 10: Mountain car performance of students whose teach-

ers had 30 episodes of training

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

A
v
e

ra
g

e
 S

te
p

s
 t

o
 G

o
a

l

Thousands of Training Steps

Independent Learning
Regular PPR

Conditional PPR
Proportional PPR

Relative PPR
Direct Transfer

Figure 11: Mountain car performance of students whose teach-

ers had 20 episodes of training

There are many potential directions for future work in this area.

Teachers could explicitly reason about the expense of communica-

tion versus the expected gain, which would be appropriate in do-

mains where communication has a non-zero cost. Teachers could

use student experience to adjust their confidence levels. There

could also be multiple teachers, with different areas of expertise,

that must coordinate with each other.

Students could also be given more active roles than they cur-

rently have in this work. For instance, a student could estimate its

teacher’s performance and decide whether or not to use the advice

it receives in a certain area of the state space, or select which advice

to follow when multiple teachers are present.

Finally, algorithms that allow agents to teach each other may also

inform strategies for agents to teach humans. Agents could make

particularly patient teachers, and using some of the ideas in this pa-

per, they could also be responsive to student learning. For instance,

an agent teacher could attempt to estimate a human’s confidence

through visit counts, reaction times, and other non-verbal cues, and

then use this estimate to decide whether to provide advice.

We hope that this paper encourages others to continue studying

inter-agent teaching, as well as providing a set of algorithms and

results to serve as benchmarks.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

A
v
e

ra
g

e
 S

te
p

s
 t

o
 G

o
a

l

Thousands of Training Steps

Independent Learning
Regular PPR

Conditional PPR
Proportional PPR

Relative PPR
Direct Transfer

Figure 12: Mountain car performance of students whose teach-

ers had 10 episodes of training

Training = 30 Training = 20 Training = 10

PPR v = 0.97 v = 0.97 v = 0.95
c-PPR v = 0.97 v = 0.97 v = 0.95
p-PPR v, f = 0.97, 1000 v, f = 0.97, 1000 v, f = 0.95, 1000
r-PPR v, d = 0.99, 100 v, d = 0.99, 100 v, d = 0.99, 100

Table 5: Best parameter settings in mountain car

6. REFERENCES

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first

international conference on Machine learning, 2004.

[2] B. Argall, S. Chernova, M. Veloso, and B. Browning. A

survey of robot learning from demonstration. Robotics and

Autonomous Systems, 57(5):469 – 483, 2009.

[3] J. A. Clouse. An introspection approach to querying a trainer.

Technical Report 96-13, University of Massachusetts,

Amherst, MA, USA, 1996.

[4] J. A. Clouse. On integrating apprentice learning and

reinforcement learning. PhD thesis, University of

Massachusetts, 1996.

[5] F. Fernández, J. García, and M. Veloso. Probabilistic policy

reuse for inter-task transfer learning. Robotics and

Autonomous Systems, 58(7):866–871, 2010. Advances in

Autonomous Robots for Service and Entertainment.

[6] F. Fernandez and M. Veloso. Probabilistic policy reuse in a

reinforcement learning agent. In Proceedings of the 5th

International Conference on Autonomous Agents and

Multiagent Systems, 2006.

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore.

Reinforcement learning: A survey. Journal of Artificial

Intelligence Research, 4:237–285, May 1996.

[8] S. Kalyanakrishnan and P. Stone. Batch reinforcement

Training = 30 Training = 20 Training = 10

PPR 21,911 25,426 31,769
conditional-PPR 21,840 23,983 21,951
proportional-PPR 21,745 23,782 21,857
relative-PPR 18,859 19,806 20,687

Table 6: Amounts of advice given by teachers while training

the students in mountain car

learning in a complex domain. In The Sixth International

Joint Conference on Autonomous Agents and Multiagent

Systems, pages 650–657, May 2007.

[9] L. J. Lin. Self-improving reactive agents based on

reinforcement learning, planning and teaching. Machine

Learning, 8:293–321, 1992.

[10] R. Maclin and J. W. Shavlik. Creating advice-taking

reinforcement learners. Machine Learning, 22(1-3):251–281,

1996.

[11] L. Nunes and E. Oliveira. Learning from multiple sources. In

In Proceedings of the Third International Joint Conference

on Autonomous Agents and Multi Agent Systems, pages

1106–1113, 2004.

[12] B. Price and C. Boutilier. Accelerating reinforcement

learning through implicit imitation. Journal of Artificial

Intelligence Research, 19:569–629, 2003.

[13] S. Singh and R. S. Sutton. Reinforcement learning with

replacing eligibility traces. Machine Learning, 22:123–158,

1996.

[14] R. S. Sutton and A. G. Barto. Introduction to Reinforcement

Learning. MIT Press, 1998.

[15] M. Tan. Multi-agent reinforcement learning: Independent vs.

cooperative agents. In Proceedings of the Tenth International

Conference on Machine Learning, pages 330–337, 1993.

[16] M. E. Taylor and P. Stone. Transfer learning for

reinforcement learning domains: A survey. Journal of

Machine Learning Research, 10(1):1633–1685, 2009.

[17] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via

inter-task mappings for temporal difference learning. Journal

of Machine Learning Research, 8(1):2125–2167, 2007.

[18] L. Torrey, T. Walker, J. W. Shavlik, and R. Maclin. Using

advice to transfer knowledge acquired in one reinforcement

learning task to another. In Proceedings of the Sixteenth

European Conference on Machine Learning, pages 412–424,

2005.

[19] S. D. Whitehead. A complexity analisys of cooperative

mechanisms in reinforcement learning. In Proceedings of the

Ninth National Conference on Artificial Intelligence, pages

607–613, 1991.

