
AI Projects for Computer Science Capstone Classes (Extended Abstract)

Matthew E. Taylor, Sakire Arslan Ay
{taylorm,arslanay}@eecs.wsu.edu

School of Electrical Engineering and Computer Science
Washington State University

Introduction
Capstone senior design projects provide students with a col-
laborative software design and development experience to
reinforce learned material while allowing students latitude
in developing real-world applications. Our two-semester
capstone classes are required for all computer science ma-
jors. Students must have completed a software engineering
course — capstone classes are typically taken during their
last two semesters. Project proposals come from a variety of
sources, including industry, WSU faculty (from our own and
other departments), local agencies, and entrepreneurs. We
have recently targeted projects in AI — although students
typically have little background, they find the ideas and
methods compelling. This paper outlines our instructional
approach and reports our experiences with three projects.

Course Description
Several weeks before the start of the semester, the instructor
solicits project topics and mentors, favoring projects that 1)
involve large scale software development, 2) encourage stu-
dents to learn about new areas, and 3) are interdisciplinary.
Ideally, the project will have an industry mentor.
Initiation (2 weeks): Matching students with projects is done
during the first week of the semester and takes into account
student preferences, prior coursework, and experience.
Planning (3 weeks): Teams follow an agile software de-
velopment blended with certain aspects of linear Waterfall
model. Software development starts with a short planning
phase followed by 2–3 week-long sprints (similar to Scrum),
where each sprint encompasses all of the typical stages of
software development for a small set of software features.
Development (20 weeks): Teams meet weekly with the in-
structor and the mentors. Each sprint typically involves
some planning, design, implementation, integration, and
testing. At the end of each sprint, the teams provide brief
demos. The prototypes are demonstrated at the end of the
first semester and the middle of the second semester.
Termination (3 weeks): The project terminates with a final
report and demonstrations of final prototype to team mentors
and to the public in the form of a poster/demo presentation.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Projects are judged in a multi-level competition on original-
ity, compliance with software engineering principles, com-
pletion, and their successful deployment.

Assessment
Student performance is assessed on multiple graded items.
Writing assignments are graded per team. Teams present
their progress weekly to the instructor and project mentor.
Meetings are highly effective in enforcing the agile method-
ology and keep projects on track. At the end of the course,
each team prepares and presents a poster. Project posters are
judged based on the quality, content, design, and presenta-
tion. During the poster session, the teams interact with sev-
eral different audiences including industry representatives,
faculty, and students. This is a valuable experience for stu-
dents: they must pitch their project in multiple ways and
they receive a substantial amount of feedback. During the
poster session, the instructor assesses the students’ soft skills
in presenting their work and their interactions with various
audiences. Lastly, students also provide formal peer review,
in accordance with cooperative learning principles.

Example Projects
The Gamification in Classroom Settings project built a mul-
tiplayer game targeted for educational use. The main nov-
elty of the project was to produce a content independent
game — rather than customizing the game to a particular
set of skills or class, build a game that could run alongside
multiple classes with minimal changes. The team worked
with a graduate student to explore multiple ways to lever-
age games to improve student engagement in introductory
classes, giving players in-game bonuses for homework sub-
mission, grade improvement, attendance, etc. The team
helped to deploy the game in a large introductory computer
science class while collecting statistics. The game is cur-
rently being improved by a new group of students. Data
mining techniques are used to better understand the trends
and player preferences associated with the game. The stu-
dents are incorporating sub-games from genres into the over-
all framework — goal is to predict which types of games will
be played most by different types of students. The collected
data will assist with a PhD student’s dissertation (Cain et al.
2016). Based on the current analysis, there was not a signifi-



cant correlation between player usage and MBTI types (My-
ers and Briggs 1962). We hope game-specific typologies
(e.g., BrainHex (Nacke et al. 2014)) will be a better indica-
tors of game preferences.

The Network Visualization & Anomaly Detection tool an-
alyzed raw network data to detect suspicious behaviors and
attacks. The tool leveraged a virtual network-monitoring
platform from the company ExtraHop for acquiring infor-
mation about network packets. It continuously analyzed the
network data and extracted features such as client location,
destination IP, time of connection, connection protocol, and
the number of similar connections and stored the extracted
information in a NoSQL database. The tool then leveraged
an SVM classifier, trained over set of data to detect anoma-
lies in the network. The tool provided a web-based inter-
face visualizing the network behavior and highlighting the
anomalous connections. The tool allowed users to monitor
the network traffic, list the anomalous connections, and dis-
play the details of the anomalous behaviors.

The Semi-Autonomous Wheelchair project aimed to im-
prove the safety and usability of electric wheelchairs for
people with ALS or other neurodegenerative diseases that
leave them unable to use typical interfaces. Addition-
ally, traditional wheelchairs have no obstacle avoidance —
electric wheelchairs can move quickly but weigh over 300
pounds without an occupant. The multi-year project built
a prototype system that assisted the user while driving the
chair, autonomously detecting and avoiding obstacles, and
moving through doorways (using a Kinect). A hardware
interface enabled programmatic control of the wheelchair
while receiving inputs from multiple devices, including a
keyboard, an eye-gaze sensor, and an Xbox controller. The
GUI allowed a user to direct the chair and displayed the en-
vironmental map, Kinect’s view, and obstacles detected.

One of the many challenges was doorway detection. The
first, a Haar cascade classifier (Viola and Jones 2001), is
built into OpenCV (Bradski 2000) and while it performed
consistently in different lighting conditions, overall it had a
high number of false positives. The second, a color based
detector, is a more precise approach when door colors and
lighting are consistent. The goal of this hand-designed
method was to find the contours of all possible targets within
a certain color range and worked best on closed doors. The
third, a depth-based detector, is most useful to tell if a door is
open or closed and could easily be combined with other door
detection methods. The fourth, an infrared-based detector,
relies on environmental modification and was the most suc-
cessful. By placing tape that is reflective in the infrared spec-
trum around the doorways, the Kinect’s infrared stream can
easily detect all doors. Students reported the project was
particularly motivating because they could demo their prod-
uct to local users with ALS and write a successful workshop
paper (Xu et al. 2016).

Discussion and Lessons Learned
Most seniors have heavy course loads and they tend to de-
lay senior design work when they get busy. We found that
weekly progress reports ensure students make some progress
each week and remain motivated. In addition, peer review

helps to motivate students to contribute and identify under-
performers. Finally, reminding the students that they will
have to present their work in a poster session to faculty, men-
tors, and peers helps to keep the team accountable.

AI projects require more attention from the instructor and
mentor, relative to other topics. When the teams are formed,
the students who completed (or co-enrolled) in introductory
level AI, machine learning, and robotics courses are pre-
ferred. In addition, the students who are involved with the
robotics club and who have hands-on/programming experi-
ence in robotics and/or machine learning are favored. Most
students working on the AI projects were familiar with var-
ious learning paradigms and SVMs when they started their
projects. In addition, the instructor and the mentors made
sure that the project’s scope and milestones were tightly de-
fined — because there are multiple ways to approach com-
plex AI problems, students may struggle to focus and fall
behind while investigating potential solutions. Teams first
implemented simple algorithms and only later handled more
disparate or challenging use cases. The agile process al-
lowed them to iteratively apply newly learned approaches
and validate performance, reducing the risk of failure.

We found testing machine learning algorithms particu-
larly difficult when there was no (well-defined) ground truth.
This was a major issue for the Network Visualization &
Anomaly Detection project and students struggled exten-
sively in verifying the accuracy of their solution. Interdis-
ciplinary projects have their own challenges and therefore
need to be managed carefully. All parts of the systems (hard-
ware, mechanical, and software) need to be unit-tested and
integration tests need to be performed continuously — it is
very difficult to diagnose software problems without a work-
ing hardware platform. Lastly, it is critical for teams to fol-
low strict coding standards and provide documentation, par-
ticularly for multi-year projects.

Acknowledgments
The authors would like to thank Eric Eaton and the anonymous
reviewers for their suggestions and comments. This research has
taken place in part in the Intelligent Robot Learning Lab, which
is supported in part by grants from NASA NNX16CD07C, NSF
IIS-1149917, NSF IIS-1643614, and USDA 2014-67021-22174.

References
G. Bradski. The OpenCV reference manual. Dr. Dobb’s Journal of
Software Tools, 2000.
C. Cain, A. Anderson, and M. E. Taylor. Content-Independent
Classroom Gamification. In Proc. of the ASEE, 2016.
I.B. Myers and K.C. Briggs. The Myers-Briggs Type Indicator:
Manual (1962). Consulting Psychologists Press, 1962.
L. E. Nacke, C. Bateman, and R. L. Mandryk. Brainhex: A neuro-
biological gamer typology survey. Entertain. Comput., 5(1), 2014.
K. Seaborn and D. I. Fels. Gamification in theory and action. Int.
J. Human-Computer Studies, 74(C):14–31, 2015.
P. Viola and M. Jones. Rapid object detection using a boosted cas-
cade of simple features. In Proc. of CVPR, 2001.
R. Xu, R. Hartshorn, R. Huard, J. Irwin, K. Johnson, G. Nelson,
J. Campbell, S. Arslan Ay, and M. E. Taylor. Towards a Semi-
Autonomous Wheelchair for Users with ALS. In IJCAI Workshop
on Autonomous Mobile Service Robots, 2016.


