
Online Transfer Learning in Reinforcement Learning Domains

Yusen Zhan, Matthew E. Taylor
School of Electrical Engineering and Computer Science

Washington State University
{yzhan,taylorm}@eecs.wsu.edu

Abstract
This paper proposes an online transfer framework to
capture the interaction among agents and shows that
current transfer learning in reinforcement learning is a
special case of online transfer. Furthermore, this paper
re-characterizes existing agents-teaching-agents meth-
ods as online transfer and analyze one such teaching
method in three ways. First, the convergence of Q-
learning and Sarsa with tabular representation with a
finite budget is proven. Second, the convergence of Q-
learning and Sarsa with linear function approximation is
established. Third, the we show the asymptotic perfor-
mance cannot be hurt through teaching. Additionally,
all theoretical results are empirically validated.

Introduction
Agents can autonomously learn to master sequential de-
cision tasks by reinforcement learning (Sutton and Barto
1998). Traditionally, reinforcement learning agents are
trained and used in isolation. More recently, the reinforce-
ment learning community became interested in interaction
among agents to improve learning.

There are many possible methods to assist agent’s learn-
ing (Erez and Smart 2008; Taylor and Stone 2009). This pa-
per focuses on action advice (Torrey and Taylor 2013): as
the student agent practices, the teacher agent suggests ac-
tions to take. This method requires only agreement of the
action sets between teachers and students, while allowing
for different state representations and different learning al-
gorithms among teachers and students.

Although this advice method is shown to empirically pro-
vides multiple benefits (Torrey and Taylor 2013; Zimmer,
Viappiani, and Weng 2014), existing work does not provide
a formal understanding of teaching or advice. Therefore, this
paper proposes a framework — an online transfer frame-
work — to characterize the interaction among agents, aim-
ing to understand the teaching or advice from the transfer
learning perspective. We extend the transfer learning frame-
work in reinforcement learning proposed by Lazaric (2012)
into online transfer learning which capture the online inter-
action between agents. Also, we show that 1) transfer learn-
ing is a special case of online transfer framework, and 2)

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

our framework is similar to that of of active learning (Settles
2010), but in a reinforcement learning setting.

After introducing our novel framework, it can be used
to analyze existing advice methods, such as action advice
(Torrey and Taylor 2013). First, we prove the convergence
of Q-learning and Sarsa with tabular representation with a
finite amount of advice. Second, the convergence of Sarsa
and Q-learning with linear function approximation is estab-
lished with finite advice. The convergence means the algo-
rithms converge to the optimal Q-value. Third, we show that
a non-infinite amount of advice cannot change the student’s
asymptotic performance. These three results are then con-
firmed empirically in a simple Linear Chain MDP and a
more complex Pac-Man simulation.

Background
This section provides necessary background, adopting some
notation introduced elsewhere (Sutton and Barto 1998;
Melo, Meyn, and Ribeiro 2008).

Markov Decision Process
Let M = 〈S,A, P,R, γ〉 be a Markov decision process
(MDP) with a compact state set S and a finite action set
A. P is the transition probability kernel. For any (s, a, s′) ∈
S × A × S tuple the probability of transition from state s
taking action a to state s′ is defined as P[s′ ∈ U |s, a] =
P (U |s, a), where U is a Borel-measurable subset1 of S.
R : S × A × S → R is a bounded deterministic function
which assigns a reward R(s, a, s′) to transition from state s
to state s′ taking action a. The discount factor is γ such that
0 ≤ γ ≤ 1. The expected total discounted reward for M
under some policy can be defined as E [

∑∞
t=0 γ

tr(st, at)] ,
where t is the time step and r(st, at) denotes the reward re-
ceived for taking action at in state st at time step t, according
to reward distribution. For convenience, we omit the state
and the action and only use rt to denote the reward received
at time step t, so the expected total discounted reward can
be written as E [

∑∞
t=0 γ

trt]. r(s, a) andR(s, a, s′) have fol-
lowing relationship: E[r(x, a)] =

∫
S
R(s, a, s′)P (ds′|s, a).

A policy is a mapping that outputs for each state-action
pair (s, a). A deterministic policy π is a mapping defined as

1Details on Borel-measurable subsets can be found else-
where (Rudin 1986).

π : S → A, while a stochastic policy is a mapping defined
over S ×A (i.e., P[choose action a|at state s] = π(s, a).)

The state-action function is the expected return for
a state action pair under a given policy: Qπ(s, a) =
Eπ
[∑∞

k=0 γ
krt+k

∣∣st = s, at = a
]
. Solving an MDP usu-

ally means finding an optimal policy that maximizes the ex-
pected return. An optimal policy π? is such that Qπ

? ≥ Qπ

for all s ∈ S, all a ∈ A and all policies π. We can
define the optimal state-value function Q? as Q?(s, a) =∫
S

(R(s, a, s′) + γmaxa′∈AQ
?(s′, a′))P (ds′|s, a), repre-

senting the expected total discounted reward received along
an optimal trajectory when taking action a in state s and fol-
lowing optimal policy π? thereafter. For all s ∈ S, π?(s) =
arg maxa∈AQ

?(s, a). Notice that although a stochastic pol-
icy may be optimal, there will always be a deterministic op-
timal policy with at least as high an expected value.

Q-learning and Sarsa
Q-learning is an important learning algorithm in reinforce-
ment learning. It is a model-free and off-policy learning al-
gorithm which is a break-through in reinforcement learning
control. Watkins (1989) introduced Q-learning as follows:

Given any estimate Q0, Q-learning algorithm can be rep-
resented by following update rules:

Qt+1(s, a) = Qt(s, a) + αt(s, a)∆t (1)

where Qt denotes the estimation of Q? at time t, {αt(s, a)}
denotes the step-size sequence and ∆t denotes temporal dif-
ference at time t,

∆t = rt + γmax
a′∈A

Qt(s
′, a′)−Qt(s, a) (2)

where rt is the reward received at time step t. The up-
date Equation 2 does not dependent any policies, so the Q-
learning is called off-policy algorithm.

In contrast to off-policy algorithms, there are some on-
policy algorithms in which Sarsa is the analogy of Q-
learning (Rummery and Niranjan 1994). Given any estimate
Q0 and a policy π, the difference between Q-learning and
Sarsa is that the temporal difference ∆t:

∆t = rt + γQt(s
′, a′)−Qt(s, a) (3)

where a′ is determined by the policy π and rt is the reward
received at time step t. Notice that the action selection in
Equation 3 involves the policy π, making it on-policy.

If both S and A are finite sets, the Q-value function can
be easily represented by an |S| × |A| matrix and it can be
represented in a computer by a table. This matrix represen-
tation is also called tabular representation. In this case, the
convergence of Q-learning, Sarsa, and other related algo-
rithms (such as TD(λ)) have been shown by previous work
(Peter 1992; Watkins and Dayan 1992; Singh et al. 2000).
However, if S or A is infinite or very large, it is infeasi-
ble to use tabular representation and a compact represen-
tation is required (i.e., function approximation). This paper
focuses on Q-learning with linear function approximation
and Sarsa with linear function approximation. The linear ap-
proximation means that state-value function Q can be repre-
sented by a linear combination of features {φi}di=1, where

φi : S × A → R is the feature and d is the number of fea-
tures. Given a state s ∈ S and an action a ∈ A, the action
value at time step t is defined as

Qt(s, a) =

d∑
i=1

θt(i)φi(s, a) = θθθᵀtφφφ(s, a) (4)

where θθθt and φφφ are d-dimensional column vectors and ᵀ de-
notes the transpose operator. Since φφφ is fixed, algorithms
only are able to update θθθt each time. Gradient-descent meth-
ods are one of most widely used of all function approxima-
tion methods. Applying a gradient-descent method to Equa-
tion 1, we obtain approximate Q-learning:

θθθt+1 = θθθt + αt(s, a)∇Qt(s, a)∆t

= θθθt + αt(s, a)φφφ(s, a)∆t
(5)

where {αt} is the update parameter at time t and ∆t is the
temporal difference at time step t (Equation 2). Similarly,
given a policy π, the on-policy temporal difference can be
defined as

∆t = rt + γQt(s
′, a′)−Qt(s, a)

= rt + γθθθᵀtφφφ(s′, a′)− θθθᵀtφφφ(s, a),
(6)

where a′ is determined by the policy π at time t. Combin-
ing Equation 5 and Equation 6, we obtain Sarsa with linear
approximation. For a set fixed features {Φi : S × A → R},
our goal is to learn a parameter vector θθθ? such that θθθᵀ?ΦΦΦ(s, a)
approximates the optimal Q-value Q?.

Online Transfer Framework
This section introduces a framework for online transfer
learning in reinforcement learning domains, inspired by pre-
vious work (Lazaric 2012).

Online Transfer
Transfer learning is a technique that leverages past knowl-
edge in one or more source tasks to improve the learning per-
formance of a learning algorithm in a target task. Therefore,
the key is to describe the knowledge transferred between dif-
ferent algorithms. A standard reinforcement learning algo-
rithm usually takes input some raw knowledge of the task
and returns a solution in a possible set of solutions. We use
K to denote the space of the possible input knowledge for
learning algorithms and H to denote the space of hypothe-
ses (possible solutions, e.g., policies and value functions).
Specifically, K refers to all the necessary input information
for computing a solution of a task, e.g., samples, features
and learning rate.

In general, the objective of transfer learning is to reduce
the need for samples from the target task by taking advan-
tage of prior knowledge. An online transfer learning algo-
rithm can been defined by a sequence of transferring and
learning phases, e.g., 1) transferring knowledge, 2) learn-
ing, 3) transferring based on previous learning, 4) learning,
etc. Let K L

s be the knowledge from L source tasks, K i
t be

the knowledge collected from the target task at time i and
K i
learn be the knowledge obtained from learning algorithm

at time i (including previous learning phases). We define
one time step as one-step update in a learning algorithms or
one batch update in batch learning algorithms. Thus, the al-
gorithm may transfer one-step knowledge, or one-episode
knowledge, or even one-task or multi-task knowledge to
the learner, depending on the setting. K i denote the knowl-
edge space with respect to time i such that K i ⊆ K , for all
i = 0, 1, 2, The online transfer learning algorithm can
be defined as

Atransfer : K L
s ×K i

t ×K i
learn → K i

transfer (7)

where K i
transfer denotes the knowledge transferred to the

learning phase at time i, i = 0, 1, 2, Notice that K i
learn

is generated by the learning algorithm. Thus, the reinforce-
ment learning algorithm can be formally described as

Alearn : K i
transfer ×K i

t → K i+1
learn ×H i+1 (8)

where K i+1
learn is the knowledge from learning algorithm at

time i + 1 and H i+1 is the hypothesis space at time i + 1,
i = 0, 1, 2, K i+1

learn is used as input for next time step
in online transfer Equation 7. Then, Atransfer generates
the transferred knowledge K i

transfer for learning phase in
Equation 8. Alearn computes the K i+1

learn for the next time
step, and so on. In practice, the initial knowledge from the
learning phase, K 0

learn can be empty or any default value.
In this framework, we expect the hypothesis space sequence
H 0,H 1,H 2, . . . will become better and better over time
under some criteria (e.g., the maximum average reward or
the maximum discounted reward), where H i ⊆ H is the
space of hypothesis with respect to i, i = 0, 1, 2, . . . , that is,
the space of possible solutions at time i. See Figure 1 for an
illustration.

Example 1. Consider the Active Relocation Model (Mi-
halkova and Mooney 2006). In this setting, there is an expert
and a learner, which can be treated as the transfer algorithm
Atransfer and the learning algorithm Alearn, respectively.
The learner is able to relocate its current state to a visited
state, but the learner may become stuck in a sub-optimal
state. Thus, the expert is able to help the learner to relo-
cate its current state to a better state according to the ex-
pert’s knowledge. This algorithm can be represented in our
framework as Ks = (S × A × S × R)Ns , where Ns is the
number of samples the expert collect from the source tasks,
K i
t = (Si × Ai × Si × Ri)Ni , K i

learn = (Q̂i × Si × Ai),
K i
transfer = (Si) and H i+1 = {Q̂i+1}, i = 0, 1, . . . , n2.

Although we explicitly introduce K i
t and K i

learn in
Equation 7 and 8, in most settings, it is impossible for the
transfer algorithm and learning algorithm to explicitly ac-
cess the knowledge from target tasks or it only has a limited
access to it. For example, the communication failure and re-
strictions may cause these problems.

2Si, Ai, Ri are all subsets of the set S of states, the set A of
actions, and the set R of rewards, respectively. Q̂i is the estimate
of Q-value function at time i. We introduce the index to distinguish

Alearn

Atransfer Alearn

K H

K i
transfer

H i+1

K i+1
learn

Kt1

...

K i
t

Figure 1: (Top) The standard learning process only requires
original knowledge from the target tasks. (Bottom) In the on-
line transfer learning process, transfer algorithm takes input
knowledge from source tasks, target task and learner at time
i and output transfer knowledge at time i, then the leaning
algorithm takes the transfer knowledge at time i to generate
hypothesis at time i+1. This process will repeat until a good
hypothesis is computed.

Transfer Learning and Online Transfer Learning
Our online transfer learning framework can be treated as an
online extension of the transfer learning framework (Lazaric
2012). If we set all K i

learn = ∅ and set i = 0, we have

Atransfer : K L
s ×K 0

t × ∅ → K 0
transfer (9)

Alearn : K L
transfer ×K 0

t → ∅×H 1 (10)
where the the Atransfer transfers the knowledge to the
Alearn once, returning to the classic transfer learning sce-
nario.

Advice Model with Budget
Now we discuss an advice method in previous work (Tor-
rey and Taylor 2013), a concrete implementation of online
transfer learning. Suppose that the teacher has learned an ef-
fective policy πt for a given task. Using this fixed policy, it
will teach students beginning to learn the same task. As the
student learns, the teacher will observe each state s the stu-
dent encounters and each action a the student takes. Having
a budget of B advice, the teacher can choose to advise the
student in n ≤ B of these states to take the “correct” action
πt(s).

The authors (Torrey and Taylor 2013) assumed the
teacher’s action advice is always correct and that students
were required to execute suggested actions. Suppose that a
reinforcement learning teacher agent T is trained in a task
and has access to its learned Q-Value function Qt. Then, a
student agent S begins training in the task and is able to ac-
cept advice in the form of actions from the teacher. We use
notation (T, S, πd) to denote the advice model where T is
the teacher agent, S is the student agent and πd is the policy
teacher that provides its advice to student. The following ex-
ample illustrates the how to characterize this advice model
in the context of our online transfer learning framework.

the the difference in different time steps. For example, the learning
algorithm is able to reach more states at time step i+1 than at time
step i. Thus, Si ⊆ Si+1.

Example 2. Let us consider the advice model using Mistake
Correcting approach with limited budget and linear func-
tion approximation (Torrey and Taylor 2013). In this model,
there is a teacher and a student, which can be treated as
the transfer algorithm and the learning algorithm, respec-
tively. First, the transfer algorithm Atransfer collects Ns
samples from L source tasks. Then, it will return an ad-
vice action a to the learning algorithm Alearn according
to the current state and the action observed from the learn-
ing algorithm (initial knowledge is empty). The learning
algorithm Alearn takes the advice action a and Ni sam-
ples from target task and returns a state and a action for
next step, meanwhile, the Alearn maintains a function in
the space H i+1 spanned by the features {φj}nj=1, where
φj : S × A → R is defined by a domain expert. More-
over, the teacher has a limited budget n for advising the stu-
dent, so the time step i = 0, 1, . . . , n. Therefore, we have
Ks = (S ×A× S ×R)Ns , K i

t = (Si ×Ai × Si ×Ri)Ni ,
K i
learn = (Si × Ai), K i

transfer = (Ai) and H i+1 =

{f(·, ·) =
∑d
j=1 θi+1(j)φj}, i = 0, 1, . . . , n.

Theoretical Analysis
For an advice model (T, S, πd) we propose in this paper, the
most important theoretical problem is to resolve the conver-
gence of algorithms since it guarantees the correctness of
algorithms. In the next subsection, we will discuss how ac-
tion advice interacts with the tabular versions of Q-learning
and Sarsa. After, the corresponding algorithms with linear
function approximation are discussed.

Tabular Representation
The convergence of Q(0) (Q-learning) has been established
by many works (Watkins and Dayan 1992; Jaakkola, Jordan,
and Singh 1994; Tsitsiklis 1994; Mohri, Rostamizadeh, and
Talwalkar 2012). We will use the one of convergence results
from (Mohri, Rostamizadeh, and Talwalkar 2012)

Lemma 1. ((Mohri, Rostamizadeh, and Talwalkar 2012)
Theorem 14.9 page 332) Let M be a finite MDP. Suppose
that for all s ∈ S and a ∈ A, the step-size sequence
{αt(st, at)} such that∑

t

αt(st, at) =∞
∑
t

αt(st, at)
2 <∞,

Then, the Q-learning Algorithm converges with probability
1.

Notice that the conditions on α(st, at) ensure the infinity
visits of action-state pairs.

Theorem 1. Given an advice model (T, S, πd), the stu-
dent S adopts the Q-learning Algorithm and conditions in
Lemma 1 all hold, convergence of Q-learning still holds in
the advice model setting.

Proof. Notice that the conditions on αt(st, at) verifies that
each state-action pair is visited infinitely many times. And
there is finite advice in our advice model. Therefore, the as-
sumptions still hold in advice model setting. Apply Lemma
1, the convergence result follows.

Compared to Q-learning, Sarsa is a on-policy algorithm
which requires a learning policy to update the Q values.
(Singh et al. 2000) prove that Sarsa with GLIE policy con-
verges. We use their result to prove the convergence of Sarsa
in advice model. First of all, we need to define GLIE policy.
Definition 1. A decaying policy π is called GLIE, greedy
in the limit with infinite exploration, policy, if it satisfies fol-
lowing two conditions:
• each state-action pair is visited infinity many times;
• the policy is greedy with respect to the Q-value function

with probability 1.
It is not hard to verify that the Boltzmann exploration pol-

icy satisfies the above two conditions. Then we provide the
result from Singh et al..
Lemma 2. ((Singh et al. 2000)) Let M be a finite MDP and
π is a GLIE policy. If the step-size sequence {αt(st, at)}
such that∑

t

αt(st, at) =∞
∑
t

αt(st, at)
2 <∞,

Then, the Sarsa Algorithm converges with probability 1.

Proof. (Singh et al. 2000) prove a similar convergence
result under a weaker assumption, they assume that
V ar(r(s, a)) < ∞ . In this paper, we assume that r(s, a)
is bounded, that is |r(s, a)| < ∞ for all (s, a) pairs, which
implies V ar(r(s, a)) <∞.

Theorem 2. Given an advice model (T, S, πd), the student
S adopts the Sarsa Algorithm and conditions in Lemma 2
all hold, convergence of Sarsa still holds in the advice model
setting

Proof. Notice that the GLIE policy guarantee that each
state-action pair is visited infinitely many times. And there
is finite advice in our advice model. Therefore, the assump-
tions still hold in advice model setting. Apply Lemma 2, the
convergence result follows.

Remark 1. On one hand, the key for the convergence re-
sults is that each state-action pair is visited infinitely often.
For an advice model, the finite budget does not invalidate
the infinite visit assumption. Therefore, the results follows
from previous convergence results hold. On the other hand,
the infinite visit assumption is a sufficient condition for the
convergence result — if the assumption does not hold, the
convergence may still hold. Moreover, the algorithms con-
verge even if the budget is infinite as long as the student is
still able to visit all state-action pairs infinitely many times.

Linear Function Approximation
In the previous subsection, we discuss some results regard-
ing tabular representation learning algorithms that require an
MDP with finite states and actions at each state. However,
infinite or large state-action space in practice is very impor-
tant since they can characterize many realistic scenarios.

The convergence of Q-learning and Sarsa with linear ap-
proximation in standard setting has been proved (Melo,
Meyn, and Ribeiro 2008), provided the relevant assumptions

hold. Our approach is inspired by this work, which assumes
that the algorithm (Q-learning or Sarsa, with linear approx-
imation) holds under the convergence conditions in (Melo,
Meyn, and Ribeiro 2008). We then apply the convergence
theorems to the action advice model (T, S, πd), and the re-
sults follow.

We need to define some notations for simplifying our
proofs. Given an MDP M = (S,A, P,R, γ) with a compact
state set S and a fixed policy π,M = (S, Pπ) is the Markov
chain induced by policy π. Assume that the chainM is uni-
formly ergodic with invariant probability measure µS over
S and the policy π satisfies π(s, a) > 0 for all a ∈ A and all
s ∈ S with non-zero µS measure3. Let µπ be the probabil-
ity measure for all Borel-measurable set U ⊂ S and for all
action a ∈ A,

µπ(U × {a}) =

∫
U

π(s, a)µS(ds).

Suppose that {φi}di=0 is a set of bounded, linearly inde-
pendent features, we define matrix Σπ as

Σπ = E[φφφᵀ(s, a)φφφ(s, a)] =

∫
S×A

φφφᵀ(s, a)φφφ(s, a)dµπ

Notice that Σπ is independent of the initial probability dis-
tribution due to uniform ergodicity.

For a fixed θθθ ∈ Rd, d > 1 and a fixed state s ∈ S, define
the set of optimal actions in state s as

Aθθθ,s =

{
a? ∈ A

∣∣∣∣θθθᵀφφφ(s, a?) = max
a∈A

θθθᵀφφφ(s, a)

}
.

A policy π is greedy w.r.t. θθθ which assigns positive proba-
bility only to actions in Aθθθ,s. We define θθθ-dependent matrix

Σ?π(θθθ) = Eπ [φφφᵀ(s, aθθθ,s)φφφ(s, aθθθ,s)] ,

where aθθθ,s is a random action determined by policy π at
state s in set Aθθθ,s. Notice that the difference between Σπ
and Σ?π(θθθ) is that the actions are taken according to π in Σπ
while in Σ?π(θθθ) they are taken greedily w.r.t. a fixed θθθ, that
is, actions in Aθθθ,s.

We will show that Q-learning with linear function approx-
imation still converges in the advice model setting at first.
We introduce following lemma:

Lemma 3. ((Melo, Meyn, and Ribeiro 2008) Theorem 1)
Let M , π and {φi}di=0 be defined as above. if, for all θθθ,
ΣΣΣπ > γ2ΣΣΣ?π(θθθ) and the step-size sequence {αt(st, at)} such
that

∑
t αt(st, at) = ∞,

∑
t αt(st, at)

2 < ∞, then the
Algorithm Q-learning with linear approximation converges
with probability 1

Theorem 3. Given an advice model (T, S, πd), if the
Markov chain which is induced by πd is also uniformly er-
godic and the student S adopts the Q-learning with linear
approximation and conditions in Lemma 3 all hold, the con-
vergence of Q-learning with linear approximation still hod
in the advice model setting.

3This condition is able to be interpreted as the continuous coun-
terpart of ”infinite visit” in finite action-state space scenario.

Proof. Apply Lemma 3, the convergence result still hold in
the advice model setting.

Next, we will analyze the convergence of Sarsa with lin-
ear approximation in the advice model. Sarsa is an on-policy
algorithm, we need some different assumptions. A policy π
is ε-greedy with respect to a Q-value function Q for a fixed
θθθ, if it chooses a random action with probability ε > 0 and
a greedy action a ∈ Aθθθ,s for all state s ∈ S. A θθθ-dependent
policy πθθθ satisfies πθθθ(s, a) > 0 for all θθθ. Now we con-
sider a policy πθθθt is ε-greedy with respect to θθθᵀtΦΦΦ(s, a) at
each time step t and Lipshitz continuous with respect to θθθ,
where K denotes the Lipshitz constant (refers to a specific
metric)4. Moreover, we assume that induced Markov chain
M = (S, Pθθθ) is uniformly ergodic.

Lemma 4. ((Melo, Meyn, and Ribeiro 2008) Theorem 2)
Let M , πθt and {φi}di=0 be defined as above. Let K be the
Lipshcitz constant of the learning policy πθ w.r.t. θ. If the
step-size sequence {αt(st, at)} such that

∑
t αt(st, at) =

∞,
∑
t αt(st, at)

2 < ∞, Then, there is K0 > 0 such that,
if K < K0, the Sarsa with linear approximation converges
with probability 1.

Theorem 4. Given an advice model (T, S, πd), if πd is θθθ-
dependent and ε-greedy w.r.t. a fixed θθθt at each time step t.
The student S adopts the Sarsa with linear approximation
and conditions in Lemma 4 all hold, Sarsa with linear ap-
proximation still converges with probability 1.

Proof. Apply Lemma 4, the convergence result still hold in
the advice model setting.

Remark 2. Notice that we assume the budget of the teacher
is finite which implies that any finite policies do not affect
the convergence results as long as the conditions in Lemma
1, 2, 3 and 4 still hold. Therefore, the student will eventually
converge even if the teacher is sub-optimal.

Asymptotic Performance
Next, we will investigate the asymptotic behavior in the ad-
vice model. Most of convergence results rely on infinite ex-
perience, which is not suitable in practice — we first redefine
the concept of convergence.

Definition 2 (Convergence in Algorithm Design). If an al-
gorithm A converges, then there exits a N ∈ N, for all
t ≥ N such that ||Qt+1 −Qt||∞ ≤ ε, where ε is very small
constant.

Theorem 5. If an algorithm A converges in terms of Def-
inition 2, then finite advice cannot improve the asymptotic
performance of algorithms A.

4Given two metric spaces (X, dx) and (Y, dy), where dX and
dY denotes metric on set X and Y , respectively. A function f :
X → Y is called Lipshitz continuous, if there exists a real con-
stant K ≥ 0 such that for all x1, x2 ∈ X ,

dY (f(x1), f(x2)) ≤ KdX(x1, x2),

where the constant K is called Lipshitz constant.

 100

 1000

 10000

 0 50 100 150 200 250 300

A
v
e

ra
g

e
 S

te
p

 t
o

 F
in

a
l
S

ta
te

 (
L

o
g

 S
c
a

le
)

Training Episodes

Optimal Teacher
Random Teacher

Poor Teacher
No Advice

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000

A
v
e

ra
g

e
 S

c
o

re

Training Episodes

Correct Teacher
Random Teacher

Poor Teacher
No Advice

Figure 2: Top: Q-learning students in Linear Chain MDP.
Bottom: Sarsa students in Pac-Man domain.

Proof. If an algorithm A converges, then there is a N ∈ N
for all t ≥ N such that ||Qt+1 −Qt||∞ ≤ ε, where ε is very
small constant. Therefore, even if the advice is sub-optimal
the student will always find the optimal action according to
its own Q-value after N updates, that is, finite advice can
not affect the asymptotic performance in the sense of infinite
horizon. The asymptotic performance is determined by the
algorithms that the student uses, not the advice provided by
a teacher.

Remark 3. Theorem 5 indicates the limitation of the advice
model. Generally, there are two intuitive methods to improve
the performance of student in the advice model: (1) higher
amounts of advice, or (2) redistribution of the advice(e.g.,
delay the advice for when it is most useful). Our theorem
points out that, with a finite budget for advice, the asymp-
totic performance is still determined by the algorithm that
the student adopts as long as the algorithm converges. Fur-
thermore, advice delay is limited also due to the convergence
of the algorithm that the student uses.

Experimental Domain and Results
In this section, we introduce the experimental results in two
domains. The goal of experiments is to provide experimen-
tal support for convergence proofs from the previous sec-
tion, as well as to justify that action advice improves learn-
ing. The first domain is a simple linear chain of states: Lin-
ear Chain. The second is Pac-Man, a well-known arcade
game. We will apply Q-learning with tabular learning to the
Linear Chain and Sarsa with linear function approximation
to Pac-Man.

Group FR FR STD TR TR STD
Optimal Teacher −53.99 3.30 −29007.01 1384.31
Random Teacher −54.56 3.59 −41670.98 2398.87

Poor Teacher −54.28 3.58 −43964.97 2394.78
No Advice −54.13 3.221 −42355.24 2660.75

Table 1: FR is the final reward of the last episode, FR STD
is final reward’s standard deviation, TR is the total reward
accumulated reward in all episodes, and TR STD is the stan-
dard deviation of total reward.

0 2 . . . 48 49

Figure 3: Linear Chain MDP with 50 states. State 0 is the
start state and state 49 is the goal state.

Linear Chain MDP
The first experimental domain is the Linear Chain
MDP (Lagoudakis and Parr 2003). In this domain, we adopt
Q-learning with the tabular representation to store the Q-
values due to the simplicity. See Figure 3 for details.

In this paper, the MDP has 50 states and two actions for
each state: left and right. state 0 is the start state and state
49 is the final state in which the episode is terminated. The
agent will receive −1 reward per step in non-terminated
states and 0 in goal state.

To smooth the variance in student performance, we av-
erage 300 independent trials of student learning. Each Lin-
ear Chain teacher is given an advice budget of n = 1000.
The reinforcement learning parameters of the students are
ε = 0.1, α = 0.9 and γ = 0.8.

We use four experimental setting to demonstrate the con-
vergence results:

• Optimal Teacher: The teacher will always give the opti-
mal action in each state, i.e., move right.

• Random Teacher: The teacher will give action advice,
50% move left and 50% move right.

• Poor Teacher: The poor teacher gives the worst action,
e.g., move left.

• No Advice: There is no advice, equivalent to normal rein-
forcement learning.

Figure 2 (top) shows the results of these experiments (note
the log scale on the y-axis). All settings converge after 280
episodes training despite different teacher performance.

To compare methods, we calculate the area under each
learning curve. We apply one-way ANOVA to test the dif-
ference between all settings and the result shows that the
p < 2× 10−16, indicating that we should reject the null hy-
pothesis that “all test groups have same means.” Therefore,
all experimental settings are statistically different, where the
optimal teacher outperforms the random teacher, which out-
performs no advice, which outperforms the poor teacher.
Also, we provide the final reward, standard deviation of final
reward, total reward and standard deviation of final reward
on Table 1.

Group FR FR STD TR TR STD
Correct Teacher 3746.75 192.18 341790.99 5936.23
Random Teacher 3649.78 167.86 313151.06 4634.88

Poor Teacher 3775.13 148.34 307926.03 7708.45
No Advice 3766.58 132.41 318072.70 7660.44

Table 2: FR, FR STD, TR and TR STD are same as those in
Table 1.

Pacman

Pac-Man is a famous 1980s arcade game in which the player
navigates a maze, trying to earn points by touching edible
items and trying to avoid being caught by the four ghosts.
We use a JAVA implementation of the game provided by
the Ms. Pac-Man vs. Ghosts League (Rohlfshagen and Lu-
cas 2011). This domain is discrete but has a very large state
space due to different position combination of player and all
ghosts — linear function approximation is used to represent
state. Student agents learn the task using Sarsa and a state
representation defined by 7 features that count objects at a
range of distances, as used (and defined) in (Torrey and Tay-
lor 2013).

To smooth the natural variance in student performance,
each learning curve averages 30 independent trials of student
learning. While training, an agent pauses every few episodes
to perform at least 30 evaluation episodes and record its av-
erage performance — graphs show the performance of stu-
dents when they are 1) not learning and 2) not receiving ad-
vice.

Each Pac-Man teacher is given an advice budget of n =
1000, which is half the number of the step limit in a single
episode. The reinforcement learning parameters of the stu-
dents are ε = 0.05, α = 0.001 and γ = 0.999.

To demonstrate that finite advice can not affect the conver-
gence of students, we adopt different experimental settings:

• Correct Teacher: Provide the (near-)optimal action when
it observes the student is about to execute a sub-optimal
action.

• Random Teacher: Provide random action suggestion from
the set of legal moves.

• Poor Teacher: Advise the student to take the action with
the lowest Q-value whenever the student is about to exe-
cute a sub-optimal action.

• No Advice: There is no advice, equivalent to normal rein-
forcement learning.

See the experimental results in Figure 2 (bottom). All set-
tings converges after 900 episodes training despite differ-
ent teacher performance. As before, a one-way ANOVA is
used to test the total reward accumulated by the four differ-
ent teaching conditions. p < 4.6 × 10−13, showing that all
experimental settings are statistically different, and that the
correct teacher was better than no advice, which was bet-
ter than the random teacher, which was better than the poor
teacher. Also, we provide rewards on Table 2.

Related Work
This section briefly outline related work in transfer learning
in reinforcement domains, online transfer learning in super-
vised learning, and algorithmic teaching.

Transfer learning in reinforcement domain has been stud-
ies recently (Taylor and Stone 2009; Lazaric 2012). Lazaric
introduces a transfer learning framework which inspires us
to develop the online transfer learning framework. Lazaric’s
framework is not online and it also suggests to use hypoth-
esis for future usage, however it still lacks of online de-
sign. Lazaric classifies transfer learning in reinforcement do-
main into three categories: instance transfer, representation
transfer and parameter transfer (Lazaric 2012). The action
advice model is a method of instance transfer due to ex-
plicit action advice (i.e., sample transfer). Lazaric proposed
an instance-transfer method which selectively transfers sam-
ples on the basis of the similarity between source and target
tasks (Lazaric, Restelli, and Bonarini 2008).

Azar, Lazaric, and Brunskill (2013) introduced a model
that takes the teacher/advice model as input and a learning
reinforcement learning algorithm is able to query the input
advice policy as it is necessary. However, their model does
not consider the learning reinforcement learning algorithm
behavior, which we believe is important in online reinforce-
ment learning.

Zhao and Hoi propose an online transfer learning frame-
work in supervised learning (Zhao and Hoi 2010), aiming
to transfer useful knowledge from some source domain to
an online learning task on a target domain. They introduce
a framework to solve transfer in two different settings. The
first is that source tasks share the same domain as target tasks
and the second is that the source domain and target domain
are different domain.

Finally, a branch in computational learning theory called
algorithmic teaching tries to understand teaching in theo-
retical ways (Balbach and Zeugmann 2009). In algorithmic
learning theory, the teacher usually determines a example se-
quence and teach the sequence to the learner. There are a lot
of algorithmic teaching models such as teaching dimension
(Goldman and Kearns 1995) and teaching learners with re-
stricted mind changes (Balbach and Zeugmann 2005). How-
ever, those models still concentrate on supervised learning.
(Cakmak and Lopes 2012) developed a teaching method
which is based on algorithm teaching, but their work focuses
on one-time optimal teaching sequence computing, which
lacks the online setting.

Discussion
This paper proposes an online transfer learning framework.
It then characterizes two existing works addressing teach-
ing in reinforcement learning. A theoretical analysis of one
of the methods, where teachers provide action advice, lead
us to the following conclusions. First, Q-learning and Sarsa
converge to the optimal Q-valuewhen there is a finite amount
of advice. Second, with linear function approximation, Q-
learning and Sarsa converge to the optimal Q-value , assum-
ing normal assumptions hold. Third,there is a limit of the
advice model: teacher advice can not affect the asymptotic

performance of any algorithms that converge. Fourth, our re-
sults are empirically justified in the Linear Chain MDP and
in Pac-Man.

In the future, sample complexity and regret analysis for
the advice model will be investigated, now that the con-
vergence results have been established. Additional mod-
els under the online transfer framework will be developed,
which will not only focus on interaction between machines,
but also consider interaction between machines and humans
(e.g., learning from demonstration (Argall et al. 2009)). Fi-
nally, we will consider other reinforcement learning algo-
rithms such as R-Max and study the theoretical properties of
those algorithms in the presence of the advice model.

Acknowledgments
This research has taken place in the Intelligent Robot Learn-
ing (IRL) Lab, Washington State University. IRL research
is support in part by grants from AFRL FA8750-14-1-
0069, AFRL FA8750-14-1-0070, NSF IIS-1149917, NSF
IIS-1319412, and USDA 2014-67021-22174.

References
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57(5):469–483.
Azar, M. G.; Lazaric, A.; and Brunskill, E. 2013. Regret
bounds for reinforcement learning with policy advice. In
Machine Learning and Knowledge Discovery in Databases.
Springer. 97–112.
Balbach, F. J., and Zeugmann, T. 2005. Teaching learners
with restricted mind changes. In Algorithmic learning the-
ory, 474–489. Springer.
Balbach, F. J., and Zeugmann, T. 2009. Recent develop-
ments in algorithmic teaching. In Language and Automata
Theory and Applications. Springer. 1–18.
Cakmak, M., and Lopes, M. 2012. Algorithmic and human
teaching of sequential decision tasks. In Proceedings of the
26th AAAI Conference on Artificial Intelligence.
Erez, T., and Smart, W. D. 2008. What does shaping mean
for computational reinforcement learning? In Development
and Learning, ICDL 7th IEEE International Conference on,
215–219. IEEE.
Goldman, S. A., and Kearns, M. J. 1995. On the complex-
ity of teaching. Journal of Computer and System Sciences
50(1):20–31.
Jaakkola, T.; Jordan, M. I.; and Singh, S. P. 1994. On the
convergence of stochastic iterative dynamic programming
algorithms. Neural computation 6(6):1185–1201.
Lagoudakis, M. G., and Parr, R. 2003. Least-squares pol-
icy iteration. The Journal of Machine Learning Research
4:1107–1149.
Lazaric, A.; Restelli, M.; and Bonarini, A. 2008. Transfer
of samples in batch reinforcement learning. In Proceedings
of the 25th international conference on Machine learning,
544–551. ACM.

Lazaric, A. 2012. Transfer in reinforcement learning: A
framework and a survey. In Wiering, M., and van Otterlo,
M., eds., Reinforcement Learning, volume 12 of Adapta-
tion, Learning, and Optimization. Springer Berlin Heidel-
berg. 143–173.
Melo, F. S.; Meyn, S. P.; and Ribeiro, M. I. 2008. An anal-
ysis of reinforcement learning with function approximation.
In Proceedings of the 25th international conference on Ma-
chine learning, 664–671. ACM.
Mihalkova, L., and Mooney, R. J. 2006. Using active reloca-
tion to aid reinforcement learning. In The 19th International
Conference of the Florida Artificial Intelligence Research
Society, 580–585.
Mohri, M.; Rostamizadeh, A.; and Talwalkar, A. 2012.
Foundations of machine learning. MIT press.
Peter, D. 1992. The convergence of td (lambda) for general
lambda. Machine Learning 8(34):341–362.
Rohlfshagen, P., and Lucas, S. M. 2011. Ms pac-man versus
ghost team cec 2011 competition. In Evolutionary Compu-
tation, IEEE Congress on, 70–77. IEEE.
Rudin, W. 1986. Real and complex analysis (3rd). New
York: McGraw-Hill Inc.
Rummery, G. A., and Niranjan, M. 1994. On-line Q-
learning using connectionist systems. University of Cam-
bridge, Department of Engineering.
Settles, B. 2010. Active learning literature survey. Univer-
sity of Wisconsin, Madison 52:55–66.
Singh, S.; Jaakkola, T.; Littman, M. L.; and Szepesvári,
C. 2000. Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine Learning
38(3):287–308.
Sutton, R. S., and Barto, A. G. 1998. Introduction to rein-
forcement learning. MIT Press.
Taylor, M. E., and Stone, P. 2009. Transfer learning for
reinforcement learning domains: A survey. The Journal of
Machine Learning Research 10:1633–1685.
Torrey, L., and Taylor, M. 2013. Teaching on a budget:
agents advising agents in reinforcement learning. In Pro-
ceedings of the International Conference on Autonomous
Agents and Multi-agent Systems, 1053–1060. International
Foundation for Autonomous Agents and Multiagent Sys-
tems.
Tsitsiklis, J. N. 1994. Asynchronous stochastic approxima-
tion and q-learning. Machine Learning 16(3):185–202.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279–292.
Watkins, C. J. C. H. 1989. Learning from delayed rewards.
Ph.D. Dissertation, University of Cambridge.
Zhao, P., and Hoi, S. C. 2010. Otl: A framework of online
transfer learning. In Proceedings of the 27th International
Conference on Machine Learning, 1231–1238.
Zimmer, M.; Viappiani, P.; and Weng, P. 2014. Teacher-
Student Framework: a Reinforcement Learning Approach.
In AAMAS Workshop Autonomous Robots and Multirobot
Systems.

