Reward Shaping by Demonstration

Halit Bener Suay Tim Brys
Worcester Polytechnic Institute Vrije Universiteit Brussel
benersuay@wpi.edu timbrys@vub.ac.be
Matthew E. Taylor Sonia Chernova
Washington State University Worcester Polytechnic Institute
taylorm@eecs.wsu.edu soniac@wpi.edu
Abstract

Potential-based reward shaping is a theoretically sound way of incorporating prior knowledge in a reinforcement lear-
ning setting. While providing flexibility for choosing the potential function, under certain conditions this method gua-
rantees the convergence of the final policy, regardless of the properties of the potential function. However, this flexibility
of choice may cause confusion when making a design decision for a specific domain, as the number of possible candi-
dates for a potential function can be overwhelming. Moreover, the potential function either can be manually designed,
to bias the behavior of the learner, or can be recovered from prior knowledge, e.g. from human demonstrations. In
this paper we investigate the efficacy of two different methods of using a potential function recovered from human
demonstrations. Our first approach uses a mixture of Gaussian distributions generated by samples collected during
demonstrations (Gaussian-Shaping), and the second approach uses a reward function recovered from demonstrations
with Relative Entropy Inverse Reinforcement Learning (RE-IRL-Shaping). We present our findings in Cart-Pole, Moun-
tain Car, and Puddle World domains. Our results show that Gaussian-Shaping can provide an efficient reward heuristic,
accelerating learning through its ability to capture local information, and RE-IRL-Shaping can be more resilient to bad
demonstrations. We report a brief analysis of our findings and we aim to provide a future reference for reinforcement
learning agent designers who consider using reward shaping by human demonstrations.

Keywords: Reinforcement Learning, Inverse Reinforcement Learning,
Reward Shaping, Learning from Demonstration.

Acknowledgements

Halit Bener Suay’s work is supported by the Office of Naval Research award N000141410795.
Tim Brys is funded by a PhD scholarship of the Research Foundation Flanders (FWO).

1 Introduction

Incorporating prior knowledge in Reinforcement Learning (RL) in a domain-independent way is an open research ques-
tion. While there is not a single, domain-generic, best way, of incorporating prior knowledge in RL, some options include:
using a model of the environment dynamics, having an initial policy, a value function, a reward function, or initial state
values [1, 2].

In this paper we explore two new options for incorporating human demonstrations into the reward signal of an RL agent
[3]. The first approach we present, Gaussian-Shaping [4], takes advantage of the demonstrations locally within the state
space and allows demonstrations of different lengths in order to generate multiple Gaussian distributions for reward
shaping with a potential function based on a similarity metric (i.e., the distance to the closest demonstrated state-action
pair). The second approach, Relative Entropy Inverse Reinforcement Learning-Shaping (RE-IRL-Shaping), is based on feature
matching and it uses a set of demonstrated trajectories in order to infer a potential function that generalizes over the en-
tire state space for shaping. Feature matching is one of the main approaches to solve the inverse reinforcement learning
(IRL) problem. In this approach an IRL algorithm tries to find a set of parameters for a reward function, in order to max-
imize the reward for experiences with matching feature counts to a demonstration set. RE-IRL algorithm is a model-free
algorithm that finds reward feature weights by minimizing the relative entropy between a set of demonstrated features,
and features along trajectories that are sampled from a demonstrator’s internal policy modeled as a probability distri-
bution. A common property of both of our approaches is that the potential function serves just as a heuristic reward
input in the RL setting. An important implication is that when learning just a reward heuristic, a learner does not need to
assume that the demonstrator is an expert, or that the outcome of the inferred data is optimal by any metric. This is be-
cause the environment reward acts as a consistent, true reward signal that the agent can rely on. Therefore as long as the
demonstrations are not deliberately malicious to hinder learning, we can drop the requirement that the demonstrations
originate from an expert demonstrator. Note that, unlike our work, most state-of-the-art learning from demonstration
algorithms do make the assumption that the demonstrator is an expert for learning a task [5]. We investigate the learning
performance of our agents in three commonly used simulated domains: Cart-Pole, Mountain Car, and Puddle World.
We aim to help future RL solver designers make more informed design decisions through comparative analysis of the
presented methods.

To give an insight into our motivation, we first look at how prior work has incorporated human input in the RL setting.
Knox and Stone introduced the TAMER framework where an RL agent receives feedback only from a human in order to
model the internal reward signal of the human. Although agents in the TAMER framework do incorporate human input
in the RL setting, the framework omits the environment signal altogether, which contrasts with our approach [6].

In a follow up work, Knox and Stone designed a comparative based on analysis of eight different techniques for com-
bining the modeled human reward signal with environment reward. Approaches they introduced varied from using the
modeled human reward as a potential function for shaping the environment reward, to simply adding an extra action
choice that maximizes the modeled human reward [7]. The general finding of the study is that the combination of a
modeled human reward function with a RL agent outperforms the RL agent, and the agent that maximizes the modeled
human reward alone. The general idea of using multiple reward functions is similar to our approach in spirit, however
our approach is not interactive. Instead we first learn reward functions based on a demonstration data-set. Moreover
instead of comparing different techniques for merging the environment reward with the human reward signal, we analyze
the use of two different shaping rewards.

Griffith et al. use simple human feedback such as right or wrong for shaping a policy in interactive reinforcement learning
setting [8]. The approach they present interprets the human feedback as a comment on the optimality of actions. In our
work we shape the reward function, and instead of treating the human input as the ground truth, both of our approaches
use demonstrations to recover a reward heuristic.

To the best of our knowledge, our choice of potential functions for reward shaping, both using a mixture of Gaussians,
and RE-IRL has not been proposed, or studied before. Next, we talk about the two different potential functions we used
for reward shaping, the functions’ effects on the performance curve of a Q-Learner agent, and our interpretation of the
results.

2 Reward Shaping by Demonstration

In this paper we focus on recording the trajectory (s, a;) of an agent throughout multiple episodes of teaching, and using
the recorded trajectories for inferring a shaping function. When available, if we rely on the environment reward as a con-
sistent source of reward, we can drop the assumption that the human input has to be optimal. We can shape the standard
reward function using a potential function generated based on demonstrations. Even though the demonstrations should
still be non-malicious (i.e. not target toward purposefully confusing the learner), reward shaping supplies an agent with
a biased, and hopefully more informative reward input. Our baseline agent is a Q-Learning agent, and in both of our
methods, the only addition we make is for the shaping of the reward function of a standard Q-Learner. Watkins defines
the standard update for a Q-function [3] as

Q(s,a) < Q(s,a) + a(R(s, a,5') + yargmax Q(s', a') — Q(s, a)) @)

In our methods, instead of using just a reward function R(s, a) we add a shaping reward F'(s, a, s’,a’) and use a shaped
reward R’ = R+ F. We compute the shaping reward F based on a potential function ®(s, a) [9, 10]. Next we present how
we infer the potential function ®(s, a), and the shaping reward F'(s, a, s, a’) from human demonstrations. We would like
to highlight that neither of our techniques require the model of the environment, but only human interaction with the
system for collecting demonstration data.

2.1 Using Local Information with Gaussian Distributions

Here we introduce our first method for inferring a potential function ¢ using demonstration data, based on sample (i.e.
state) similarity given a discrete action a. We show i) how we decide what constitutes a similar sample, ii) how we pick the
most similar sample within a demonstration set, and once we do, iii) how we use the similarity as a heuristic for reward
shaping. We use the following set of equations:

Y=ol (2)

g(s,5%,8) = e(~HlmsDTE =) 3)
®(s,a) = max g(s, s7,%) (4)
F(s,a,8',a") = v®(s',a’) — ®(s,0a) ®)

where, s is the state that is being experienced by the agent at a given time, s¢ is one of the states demonstrated which we
iterate through, I is an identity matrix, and ¥ is the covariance matrix that defines the reach of influence of demonstrated
state-action pairs. ¥ is domain specific and we tune ¢ manually, however it is possible to learn metrics, such as %,
autonomously for RL agents [11]. The intuition for tuning X is to set it to larger values for higher dimensional state-
spaces. Eq. 3 is a multivariate Gaussian distribution, which outputs the value of a similarity metric that varies between
0 and 1 depending on the distance between the current state and the closest demonstrated sample within the set of
demonstrations. Eq. 4 is the potential function for reward shaping, based on which we compute our shaping reward
using Eq. 5 [10].

The idea behind our algorithm is simple: once we decide the spread of demonstrated samples and tune ¢ (Eq. 2), we
iterate through demonstrated samples using Eq. 3, and assign the maximum similarity value as the value of the potential
for the state (Eq. 4). We compute the similarity metric both for the current state s’ and the previous state s of the agent,
and compute the difference using Eq. 5, where 7 is the discount factor. For a more detailed description and analysis of
this approach we refer the readers to Brys et al. [4].

Eq. 3 is the reason why we call this approach local. Given an action and a set of demonstrations, encounters with states
that are similar to demonstrated states result in high potential for reward shaping. If the agent transitions from a state s
that is not similar to any of the demonstrated states, into a state s’ that is very similar to one of the demonstrated states,
Eq. 5 returns a positive shaping reward indicating that the agent took an action in a good direction. In the opposite case,
Eq. 5 returns a negative shaping reward.

Even though using sample similarity in this fashion helps to guide the agent toward demonstrated states, this approach
imposes a constraint on the quality of the demonstrations themselves. Since currently we do not incorporate the quality
of a given sample within our algorithm (i.e. good demonstration vs. bad demonstration), similarity to all demonstrated
states is considered to be equally good. That is, if the agent has been demonstrated an action in a state similar to its
current state, this can only mean that the action is valuable in that current state. Consequently, if the set of demonstrations
includes undesired data points (intentional or unintentional), when the agent experiences states similar to these undesired
data points, it is possible that the resulting shaping reward will be positive, which would degrade the agent’s learning
performance. We recognize the importance of automated demonstration quality assessment. One idea for assessing the
demonstration quality is to analyze the statistics of the features which may give an idea about the consistency of the data,
however we leave this idea for future work, since it deserves to be the main focus of a separate analysis.

2.2 Using RE-IRL As a Heuristic for Reward Shaping

Our second method for inferring a potential function ¢ from demonstration data is based on Relative Entropy Inverse
Reinforcement Learning (RE-IRL), a model-free inverse reinforcement learning technique introduced by Boularias et al.
[12]. The input for RE-IRL is a set of demonstrations which are trajectories of equal length, and the output is a set of
reward feature weights w required to compute a reward value for a given state s. We show i) how we compute a reward
using a linear combination of learned feature weights, and ii) how we use the reward as the potential function for reward
shaping. The set of equations we use for our approach are:

Rrgr(s,a) =Y wifils) (6)
i=0

(I)(S) = R[RL(S,G,) (7)

F(s,a,s',a") = y®(s") — ®(s) (8)

where, f; is ith reward feature, w; is ith feature weight, s’ is the state vector for the current state of the agent, and s is the
previous state vector.

Cartpole Mountain Car Puddleworld
500

—Q-Learning
800{{ — Gaussian-Shaping
— RE-IRL-Shaping

—Q-Learning
—— Gaussian-Shaping
450 —— RE-IRL-Shaping

400
600
S 350

0 g(

) 2 300
W M“I\KIW 250
o WM@M&W%WMW sooh
et 150

0 200

Steps pole up

Stej

—Q-Learning
—— Gaussian-Shaping
—— RE-IRL-Shaping

50 200 250

800 1000 0 50 200 250 0 50

400 600 100 150 100 1
Episode Episode Episode

(a) (b) (©

Figure 1: Learning performance results in (a) Cart-Pole, (b) Mountain Car, and (c) Puddle World domains.

Coeff. | Cart-Pole | Mountain Car | Puddle World
0.25 01 02 .
« 16 14 10 variable w;
5 1.0 1.0 1.0 cart, 0.4245
€ 0.05 0.1 0.05 cart; | 0.56805 variable w; variable w;
A 0.25 0.95 0.95 poleg 0.33986 T -0.999 T 0.76
o 0.2 0.1 0.1 poleg 0.61774 T 0.001 y 0.6497

(@) (b) (© (d)

Table 1: Learning coefficients we used for our experiments (a). Reward feature weights in (b) Cart-Pole, (c) Mountain
Car, and (d) Puddle World domains. = and y are position variables; & is velocity; 6 is angle and 6§ is angular velocity.

Our approach has two parts: first we learn a reward function by recovering reward feature weights based on a set of
demonstrations, and then we use the learned reward function as a potential function for reward shaping. In order to
obtain reward feature weights, RE-IRL computes the average feature values (for each feature) over a set of demonstrated
trajectories, and uses importance sampling for estimating feature weights in order to iteratively drive a gradient to zero.
The gradient is simply the difference between the average (demonstrated) feature values and sampled feature values.
For further details of the RE-IRL we refer our readers to [12]. Instead of using the learned function as a reward function
(Eq. 6), we define a potential function (Eq. 7) for shaping reward (Eq. 8). This algorithmic setup incorporates a function
we learn from human demonstrations into autonomous learning as a shaping reward (or heuristic).

The weights we recover for each reward feature indicate how each feature value affects the reward output. For instance
a feature can positively, or negatively dominate others in terms of reward output and understanding each feature’s
contribution in the reward output can be informative. Moreover RE-IRL computes feature weights using the entire
trajectory space and set of demonstrations. As a consequence of average feature matching, this approach is robust against
small changes in demonstrations. This global use of the demonstration data is in contrast with the previous approach we
introduced. If the agent transitions into a state where, the linear combination of the reward features is higher than a
previous state, this transition yields a positive shaping reward.

Although we take advantage of the demonstration data on average, in this approach we are limited with the linear
combination of the reward features for computing the potential function. This is an important factor to consider when
choosing which reward features to use. Even though the reward features can be arbitrarily engineered to design an
ad-hoc solution depending on the domain, here for simplicity and compatibility with our previous approach, we chose
to use the state variables as reward feature in each domain. We acknowledge that as a future work we need a thorough
investigation for choosing the set of reward features.

2.3 Experiments

We tested our approach in three domains using 10 demonstrated trajectories for each domain. The length of demonstra-
ted trajectories respectively were 156, 182, and 39 respectively for Cart-Pole, Mountain Car, and Puddle World domains.
In order to keep the demonstration lengths equal, for shorter demonstrations, we appended the final state as an absorb-
ing terminal state at the end of the demonstration. The demonstrations we recorded begin at the initial state and end
at the goal (for Mountain Car and Puddle World) or the failure state (for Cart-Pole) of the agent. The demonstrator is
the first author who has experience with all three domains. The demonstrator made the demonstrations for reaching the
goal as quickly as possible in Mountain Car and Puddle World, and for keeping the pole in balance as long as possible
for the Cart-Pole domain. Table 1a shows the RL coefficients we used for our experiments.

Table 1b - 1d list the feature weights we use for RE-IRL-Shaping, which we obtained from our set of demonstrations. We
can see that in Cart-Pole domain, positive values of state variables result in a positive potential. Although these values
are based on demonstrations, one can argue that encouraging the agent toward positive states is not optimal in Cart-
Pole. RE-IRL-Shaping performed better than our Gaussian-Shaping algorithm (Fig. 1a). We conclude that this difference

originates from the way our two techniques take advantage of the demonstrations. However, in Cart-Pole the standard
Q-Learning agent outperformed both of our approaches.

For RE-IRL-Shaping agent, in the Mountain Car, the position of the car is negatively weighted, and even though positive
velocities contribute positively, the effect of the velocity of the car is highly dampened in comparison with the position
of the car. This is because the demonstration data includes left and right swings of the car until the car reaches the goal
state. The initial state in the domain is sy = [—0.5,0.0], and the shaping reward is positive as long as the car goes to
the left. This is the only way for the car to speed up fast enough, so it can climb the hill to reach its goal. This set of
weights provides an informative heuristic for the RE-IRL-Shaping agent however its performance is not any better than
the standard Q-Learner.

In the Puddle World domain, weights for both state variables (x and y position) yield a high potential as the RE-IRL-
Shaping agent goes to the right and up in the world. This aligns well with the purpose of the agent since the goal
is on the upper right corner of the world, and we can see the positive effect of this potential function on the learning
performance of RE-IRL-Shaping agent especially within the first 30 episodes. This algorithm outperforms the standard
Q-Learner, even though Gaussian-Shaping algorithm shows the best overall learning performance.

As shown in Fig. 1b and 1c, the Gaussian-Shaping agent outperforms the standard Q-Learning agent, and RE-IRL-
Shaping agent in Mountain Car and Puddle World domains. In both domains, the agents start from an initial non-goal
state, and the common purpose is to keep moving until reaching a goal state. We use demonstration data not only to
help guide the agents toward desired states, but also to initialize the Q-function using Eq. 4, with Qo(s,a) = ®(s,a) as
described by Wiewiora et al. [10]. The results show a remarkable boost in the learning performance of Gaussian-Shaping
agent in these two domains, starting from the very first episode.

On the other hand, in the Cart-Pole, agents start in a desired equilibrium state, and the purpose is to try to stay close to
that initial state. This fundamental difference in the purpose of the task, the level of difficulty of the task for a demons-
trator, and the failure (or borderline failure) states that are saved in demonstrations, affect the learning performance of
the Gaussian-Shaping agent (Fig. 1a). The performance of the agent suffers from samples that are close to failure states,
which highlights the importance of the content of the demonstrations.

3 Conclusion

With this work we present two different potential functions for reward shaping: a function based on similarity of the
samples to demonstrated states, and a function learned with inverse reinforcement learning. Both potential functions
enable us incorporate prior knowledge in RL. Our analysis in three standard RL domains shows that our sample si-
milarity approach speeds up learning remarkably. However, it is sensitive to states that may be less optimal that are
included in the demonstration data-set. On the other hand, even though with the current choice of reward features,
our inverse reinforcement learning approach is less effective in improving the learning performance, when the majority
of the demonstrations are in agreement, this approach is comparatively more robust against small disturbances in the
demonstration data. We leave addressing the noise sensitivity, and reward feature selection issues for future work.

References

1] R.S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. Cambridge, MA, USA: MIT Press, 1st ed., 1998.
2] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” IJRR, 2013.
3] C.]J.C. H. Watkins, Learning from delayed rewards. PhD thesis, University of Cambridge England, 1989.

4] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Now¢, “Reinforcement learning from demonstration
through shaping,” in Proceedings of the International Joint Conference on Artificial Intelligence (I[CAI), 2015.
[5] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from demonstration,” Robot. Auton. Syst.,
vol. 57, pp. 469483, May 2009.
[6] W.B.Knox and P. Stone, “Interactively shaping agents via human reinforcement: The tamer framework,” in Proceedings of the fifth
international conference on Knowledge capture, pp. 9-16, ACM, 2009.
[7] W. B. Knox and P. Stone, “Combining manual feedback with subsequent mdp reward signals for reinforcement learning,” in
Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, 2010.
[8] S. Griffith, K. Subramarian, J. Scholz, C. Isbell, and A. Thomaz, “Policy Shaping: Integrating Human Feedback with Reinforce-
ment Learning,” in Advances in Neural Information Processing Systems, pp. 2625-2633, 2013.
[9] A.Y.Ng, D. Harada, and S. Russell, “Policy invariance under reward transformations: Theory and application to reward shap-
ing,” in In Proceedings of the Sixteenth International Conference on Machine Learning, pp. 278-287, Morgan Kaufmann, 1999.
[10] E. Wiewiora, G. W. Cottrell, and C. Elkan, “Principled methods for advising reinforcement learning agents,” in Machine Learning,
Proceedings of the Twentieth International Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA, pp. 792-799, 2003.
[11] M. E. Taylor, B. Kulis, and F. Sha, “Metric learning for reinforcement learning agents,” in The 10th International Conference on
Autonomous Agents and Multiagent Systems - Volume 2, AAMAS 11, (Richland, SC), pp. 777-784, International Foundation for
Autonomous Agents and Multiagent Systems, 2011.

[12] A.Boularias, J. Kober, and J. Peters, “Relative entropy inverse reinforcement learning,” in Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, pp. 182-189, 2011.

